Skip to content

Cannot using examples.models.llama.export_llama due to incorrect deprecated #6375

@hsyodyssey

Description

@hsyodyssey

🐛 Describe the bug

cannot using:

python -m examples.models.llama.export_llama   --checkpoint "checkpoint.pth"   --params "original_params.json"   -kv   --use_sdpa_with_kv_cache   -X   -d bf16   --metadata '{"get_bos_id":128000, "get_eos_ids":[128009, 128001]}'   --output_name="llama3_2.pte"

With Error

  File "/home/repos/executorch/exir/passes/sym_shape_eval_pass.py", line 14, in <module>
    from executorch.exir._warnings import deprecated
  File "/home/repos/executorch/exir/_warnings.py", line 29, in <module>
    class experimental(deprecated):
TypeError: function() argument 'code' must be code, not str

Versions

PyTorch version: 2.6.0.dev20241007+cpu
Is debug build: False
CUDA used to build PyTorch: Could not collect
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.2 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: 18.0.1 (https://android.googlesource.com/toolchain/llvm-project d8003a456d14a3deb8054cdaa529ffbf02d9b262)
CMake version: version 3.27.7
Libc version: glibc-2.35

Python version: 3.10.0 (default, Mar 3 2022, 09:58:08) [GCC 7.5.0] (64-bit runtime)
Python platform: Linux-5.15.153.1-microsoft-standard-WSL2-x86_64-with-glibc2.35
Is CUDA available: False
CUDA runtime version: 12.2.140
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4090
Nvidia driver version: 560.94
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 24
On-line CPU(s) list: 0-23
Vendor ID: GenuineIntel
Model name: 13th Gen Intel(R) Core(TM) i7-13700K
CPU family: 6
Model: 183
Thread(s) per core: 2
Core(s) per socket: 12
Socket(s): 1
Stepping: 1
BogoMIPS: 6835.20
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology tsc_reliable nonstop_tsc cpuid pni pclmulqdq vmx ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves avx_vnni umip waitpkg gfni vaes vpclmulqdq rdpid movdiri movdir64b fsrm md_clear serialize flush_l1d arch_capabilities
Virtualization: VT-x
Hypervisor vendor: Microsoft
Virtualization type: full
L1d cache: 576 KiB (12 instances)
L1i cache: 384 KiB (12 instances)
L2 cache: 24 MiB (12 instances)
L3 cache: 30 MiB (1 instance)
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Mitigation; Enhanced IBRS
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected

Versions of relevant libraries:
[pip3] executorch==0.5.0a0+af13be9
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu11==11.10.3.66
[pip3] nvidia-cublas-cu12==12.1.3.1
[pip3] nvidia-cuda-cupti-cu11==11.7.101
[pip3] nvidia-cuda-cupti-cu12==12.1.105
[pip3] nvidia-cuda-nvrtc-cu11==11.7.99
[pip3] nvidia-cuda-nvrtc-cu12==12.1.105
[pip3] nvidia-cuda-runtime-cu11==11.7.99
[pip3] nvidia-cuda-runtime-cu12==12.1.105
[pip3] nvidia-cudnn-cu11==8.5.0.96
[pip3] nvidia-cudnn-cu12==8.9.2.26
[pip3] nvidia-cufft-cu11==10.9.0.58
[pip3] nvidia-cufft-cu12==11.0.2.54
[pip3] nvidia-curand-cu11==10.2.10.91
[pip3] nvidia-curand-cu12==10.3.2.106
[pip3] nvidia-cusolver-cu11==11.4.0.1
[pip3] nvidia-cusolver-cu12==11.4.5.107
[pip3] nvidia-cusparse-cu11==11.7.4.91
[pip3] nvidia-cusparse-cu12==12.1.0.106
[pip3] nvidia-nccl-cu11==2.14.3
[pip3] nvidia-nccl-cu12==2.18.1
[pip3] nvidia-nvjitlink-cu12==12.3.52
[pip3] nvidia-nvtx-cu11==11.7.91
[pip3] nvidia-nvtx-cu12==12.1.105
[pip3] torch==2.6.0.dev20241007+cpu
[pip3] torchao==0.5.0+git0916b5b2
[pip3] torchaudio==2.5.0.dev20241007+cpu
[pip3] torchsr==1.0.4
[pip3] torchvision==0.20.0.dev20241007+cpu
[pip3] triton==3.1.0
[conda] executorch 0.5.0a0+af13be9 pypi_0 pypi
[conda] numpy 1.26.4 pypi_0 pypi
[conda] torch 2.6.0.dev20241007+cpu pypi_0 pypi
[conda] torchao 0.5.0+git0916b5b2 pypi_0 pypi
[conda] torchaudio 2.5.0.dev20241007+cpu pypi_0 pypi
[conda] torchsr 1.0.4 pypi_0 pypi
[conda] torchvision 0.20.0.dev20241007+cpu pypi_0 pypi
[conda] triton 3.1.0 pypi_0 pypi

cc @mergennachin @cccclai @helunwencser @dvorjackz

Metadata

Metadata

Assignees

Labels

module: llmIssues related to LLM examples and apps, and to the extensions/llm/ codetriagedThis issue has been looked at a team member, and triaged and prioritized into an appropriate module

Type

No type

Projects

Status

To triage

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions