Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions backends/xnnpack/partition/xnnpack_partitioner.py
Original file line number Diff line number Diff line change
Expand Up @@ -553,6 +553,9 @@ def __init__(self):
torch.nn.ReLU,
torch.nn.functional.relu,
torch.nn.functional.relu_,
torch.nn.functional.leaky_relu,
torch.nn.functional.leaky_relu_,
torch.nn.LeakyReLU,
]

# Modules which support dynamic quantization
Expand Down
41 changes: 41 additions & 0 deletions backends/xnnpack/test/test_xnnpack_quantized.py
Original file line number Diff line number Diff line change
Expand Up @@ -178,6 +178,47 @@ def test_xnnpack_qhardtanh(self):
example_inputs = (torch.randn(1, 1, 1),)
self.quantize_and_test_model(torch.nn.Hardtanh(), example_inputs)

def test_xnnpack_leaky_relu(self):
example_inputs = (torch.randn(1, 3, 3),)

class LeakyReLUModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.leaky_relu_out_of_place = torch.nn.LeakyReLU(negative_slope=0.2)

def forward(self, x):
return self.leaky_relu_out_of_place(x)

self.quantize_and_test_model(LeakyReLUModule(), example_inputs)

def test_xnnpack_leaky_relu2(self):
example_inputs = (torch.randn(1, 3, 3),)

class LeakyReLUModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.leaky_relu_in_place = torch.nn.LeakyReLU(
negative_slope=0.08, inplace=True
)

def forward(self, x):
return self.leaky_relu_in_place(x)

self.quantize_and_test_model(LeakyReLUModule(), example_inputs)

def test_xnnpack_leaky_relu3(self):
example_inputs = (torch.randn(1, 3, 3),)

class LeakyReLUModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.leaky_relu_functional_default = torch.nn.functional.leaky_relu

def forward(self, x):
return self.leaky_relu_functional_default(x)

self.quantize_and_test_model(LeakyReLUModule(), example_inputs)

def test_xnnpack_qlinear(self):
in_size = 1
input_size = 3
Expand Down