Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions backends/arm/_passes/arm_pass_manager.py
Original file line number Diff line number Diff line change
Expand Up @@ -118,7 +118,7 @@ def _tosa_080_BI_pipeline(self, exported_program: ExportedProgram) -> GraphModul
self.add_pass(UnsqueezeBeforeRepeatPass())
self.add_pass(CastInt64BuffersToInt32Pass(exported_program))
self.add_pass(DecomposeSumPass())
self.add_pass(Conv1dUnsqueezePass(exported_program))
self.add_pass(Conv1dUnsqueezePass())
self.add_pass(DecomposeSelectPass())
self.add_pass(ConvertSqueezesToViewPass())

Expand Down Expand Up @@ -173,7 +173,7 @@ def _tosa_080_MI_pipeline(self, exported_program: ExportedProgram) -> GraphModul
self.add_pass(UnsqueezeBeforeRepeatPass())
self.add_pass(CastInt64BuffersToInt32Pass(exported_program))
self.add_pass(DecomposeSumPass())
self.add_pass(Conv1dUnsqueezePass(exported_program))
self.add_pass(Conv1dUnsqueezePass())
self.add_pass(DecomposeSelectPass())
self.add_pass(ConvertSqueezesToViewPass())

Expand Down
165 changes: 42 additions & 123 deletions backends/arm/_passes/conv1d_unsqueeze_pass.py
Original file line number Diff line number Diff line change
@@ -1,148 +1,67 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# Copyright 2024 Arm Limited and/or its affiliates.
# All rights reserved.
# Copyright 2024-2025 Arm Limited and/or its affiliates.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

# pyre-unsafe


import torch
from executorch.backends.arm._passes.arm_pass_utils import (
create_node,
get_param_tensor,
is_param_node,
)
from executorch.exir import ExportedProgram
from executorch.exir.dialects._ops import ops as exir_ops
from executorch.exir.pass_base import ExportPass, PassResult
from executorch.exir.pass_base import ExportPass


class Conv1dUnsqueezePass(ExportPass):
"""
This pass is used to change conv1d ops into conv2d since TOSA only
supports 2d and 3d convolution. This is done by modifying the graph to do the
following:
1) unsqueeze the convolution's input from 3d to 4d
1a) unsqueeze the convolution's input from 3d to 4d
1b) unsqueeze the convolution's weight from 3d to 4d
2) perform a conv2d (with a modified version of the original conv1d args)
3) squeeze the output back down to 3d.
"""

def __init__(self, exported_program: ExportedProgram) -> None:
super().__init__()
self.exported_program = exported_program

def unsqueeze_kernel_weights(self, kernel_node):
"""
Unsqueezes the weights of a conv1d to make it 4 dimensional.

Args:
kernel_node: the weights of conv1d node to be unsqueezed
"""
kernel_param_3d = get_param_tensor(self.exported_program, kernel_node)
if kernel_param_3d is None:
raise AssertionError("Expected param tensor for the kernel node")

kernel_param_4d = torch.nn.Parameter(
data=kernel_param_3d.data.contiguous().unsqueeze(dim=-1),
requires_grad=False,
def call_operator(self, op, args, kwargs, meta):
if op != exir_ops.edge.aten.convolution.default:
return super().call_operator(op, args, kwargs, meta)
stride = list(args[3])
if len(stride) != 1:
return super().call_operator(op, args, kwargs, meta)

x = args[0]
x_unsqueezed_shape = list(x.data.shape) + [1]
x = super().call_operator(
exir_ops.edge.aten.view_copy.default, (x, x_unsqueezed_shape), {}, meta
)

if torch._export.utils.is_param(self.exported_program, kernel_node):
parameter_name = self.exported_program.graph_signature.inputs_to_parameters[
kernel_node.name
]
self.exported_program.state_dict[parameter_name] = kernel_param_4d
kernel_node.meta["val"] = kernel_node.meta["val"].data.unsqueeze(dim=-1)
elif torch._export.utils.is_buffer(self.exported_program, kernel_node):
buffer_name = self.exported_program.graph_signature.inputs_to_buffers[
kernel_node.name
]
self.exported_program.state_dict[buffer_name] = kernel_param_4d
kernel_node.meta["val"] = kernel_node.meta["val"].data.unsqueeze(dim=-1)
elif torch._export.utils.is_lifted_tensor_constant(
self.exported_program, kernel_node
):
buffer_name = (
self.exported_program.graph_signature.inputs_to_lifted_tensor_constants[
kernel_node.name
]
)
self.exported_program.constants[buffer_name] = kernel_param_4d
kernel_node.meta["val"] = kernel_node.meta["val"].data.unsqueeze(dim=-1)
else:
setattr(
kernel_node.graph.owning_module,
kernel_node.target,
kernel_param_4d,
)

def call(self, graph_module: torch.fx.GraphModule):
graph = graph_module.graph
node_list = list(graph.nodes)
for node in node_list:
if node.op == "call_function":
if node.target == exir_ops.edge.aten.convolution.default:
stride = list(node.args[3])
if len(stride) != 1:
# skip conv if it is not 1d
continue

kernel_node = node.args[1]

if not is_param_node(self.exported_program, kernel_node):
raise AssertionError(
"Expected op for convolution weight node to be a get_attr node or a parameter"
)
w_meta = meta.copy()
w_meta.data["input_qparams"] = {}
w_meta.data["output_qparams"] = {}

# Modify graph such that the conv changes from 1d to 2d
self.unsqueeze_kernel_weights(kernel_node)

# (b) Extend stride, padding, and dilation for extra dim
node.args = (
node.args[0],
node.args[1],
node.args[2],
node.args[3] + [1], # stride
node.args[4] + [0], # padding
node.args[5] + [1], # dilation
node.args[6],
node.args[7] + [0],
node.args[8],
)

# c. Add unsqueeze to input (3d -> 4d) and squeeze to output (4d -> 3d)
# unsqueeze -> conv2d -> squeeze
with graph.inserting_before(node):
input_node = node.args[0]
unsqueeze_before = create_node(
graph, exir_ops.edge.aten.unsqueeze_copy.default
)
unsqueeze_before.args = (
input_node, # Input is node's original input
-1, # Last Dimension
)
node.replace_input_with(input_node, unsqueeze_before)
w = args[1]
w_unsqueezed_shape = list(w.data.shape) + [1]
w = super().call_operator(
exir_ops.edge.aten.view_copy.default, (w, w_unsqueezed_shape), {}, w_meta
)

with graph.inserting_after(node):
squeeze_after = create_node(
graph,
exir_ops.edge.aten.squeeze_copy.dims,
)
squeeze_after.args = (
node, # Input is the conv node
[-1], # Last dimension
)
original_users = [
user for user in node.users if user != squeeze_after
]
for user in original_users:
user.replace_input_with(node, squeeze_after)
new_args = (
x,
w,
args[2],
args[3] + [1], # stride
args[4] + [0], # padding
args[5] + [1], # dilation
args[6],
args[7] + [0],
args[8],
)
x = super().call_operator(
exir_ops.edge.aten.convolution.default, new_args, kwargs, meta
)

graph_module.recompile()
# Since we are overriding "call", we need to call the parent's "call"
# to retrace the graph and regenerate metadata
graph_module = super().call(graph_module).graph_module
x_squeezed_shape = list(x.data.shape)[:-1]
x = super().call_operator(
exir_ops.edge.aten.view_copy.default, (x, x_squeezed_shape), {}, meta
)

return PassResult(graph_module, True)
return x
Loading