-
Notifications
You must be signed in to change notification settings - Fork 684
Qualcomm AI Engine Direct - PTQ for llama3.2 1b/3b #12700
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
4 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,223 @@ | ||
# Copyright (c) Qualcomm Innovation Center, Inc. | ||
# All rights reserved | ||
# | ||
# This source code is licensed under the BSD-style license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
import types | ||
from contextlib import contextmanager | ||
|
||
import torch | ||
import torchao | ||
from executorch.backends.qualcomm.quantizer.observers.per_block_param_observer import ( | ||
PerBlockParamObserver, | ||
) | ||
from executorch.exir.pass_base import ExportPass, PassResult | ||
from torchao.quantization.pt2e import PerChannelMinMaxObserver | ||
|
||
|
||
class SeqMseModule(torch.nn.Module): | ||
""" | ||
Args: | ||
nominal_weight: Tensor | ||
nominal parameters from operator | ||
nominal_bias: Tensor | ||
nominal parameters from operator | ||
operator: fx.Node | ||
operator to be executed | ||
observer: UniformQuantizationObserverBase | ||
parameter observer (specific for weight) | ||
num_candidates: int | ||
grids to search minimal mse loss | ||
""" | ||
|
||
def __init__( | ||
self, | ||
nominal_weight, | ||
nominal_bias, | ||
operator, | ||
observer, | ||
num_candidates, | ||
): | ||
super().__init__() | ||
self.nominal_weight = nominal_weight | ||
self.nominal_bias = nominal_bias | ||
self.observer = observer | ||
self.steps = torch.linspace( | ||
1 / num_candidates, 1, steps=num_candidates | ||
).tolist() | ||
self.operator = self._make_operator(operator) | ||
self.best_candidate_step = 1.0 | ||
|
||
def _make_operator(self, aten_op): | ||
if aten_op.target == torch.ops.aten.conv2d.default: | ||
stride = [1, 1] if len(aten_op.args) < 4 else aten_op.args[3] | ||
padding = [0, 0] if len(aten_op.args) < 5 else aten_op.args[4] | ||
dilation = [1, 1] if len(aten_op.args) < 6 else aten_op.args[5] | ||
groups = 1 if len(aten_op.args) < 7 else aten_op.args[6] | ||
has_bias = self.nominal_bias is not None | ||
module = torch.nn.Conv2d( | ||
in_channels=self.nominal_weight.shape[1], | ||
out_channels=self.nominal_weight.shape[0], | ||
kernel_size=self.nominal_weight.shape[-2:], | ||
stride=stride, | ||
padding=padding, | ||
dilation=dilation, | ||
groups=groups, | ||
bias=has_bias, | ||
) | ||
module.weight.data = self.nominal_weight | ||
if has_bias: | ||
module.bias.data = self.nominal_bias | ||
return module | ||
else: | ||
raise NotImplementedError(f"target of {aten_op.target} is not implemented") | ||
|
||
def _per_block_qdq(self, scale, zero_point): | ||
return torchao.quantization.quant_primitives._fake_quantize_affine( | ||
input=self.nominal_weight, | ||
block_size=self.observer.block_size, | ||
scale=scale, | ||
zero_point=zero_point, | ||
quant_dtype=self.observer.dtype, | ||
quant_min=self.observer.quant_min, | ||
quant_max=self.observer.quant_max, | ||
) | ||
|
||
def _per_channel_qdq(self, scale, zero_point): | ||
return torch.fake_quantize_per_channel_affine( | ||
input=self.nominal_weight, | ||
scale=scale, | ||
zero_point=zero_point, | ||
axis=0, | ||
quant_min=self.observer.quant_min, | ||
quant_max=self.observer.quant_max, | ||
) | ||
|
||
def _fake_quant(self, scale, zero_point): | ||
dispatcher = { | ||
PerChannelMinMaxObserver: self._per_channel_qdq, | ||
PerBlockParamObserver: self._per_block_qdq, | ||
} | ||
return dispatcher[type(self.observer)](scale, zero_point) | ||
|
||
def _find_best_candidate(self, nominal_input, nominal_output): | ||
# calculate current baseline | ||
scale, zero_point = self.observer.calculate_qparams() | ||
zero_point = zero_point.to(torch.int32) | ||
self.operator.weight.data = self._fake_quant(scale, zero_point) | ||
candidate, current_loss = ( | ||
1, | ||
torch.nn.functional.mse_loss( | ||
self.operator(nominal_input), nominal_output | ||
).item(), | ||
) | ||
for step in self.steps: | ||
self.operator.weight.data = self._fake_quant(scale * step, zero_point) | ||
loss = torch.nn.functional.mse_loss( | ||
self.operator(nominal_input), nominal_output | ||
).item() | ||
if loss < current_loss: | ||
candidate, current_loss = step, loss | ||
return candidate | ||
|
||
def forward(self, nominal_input, nominal_output): | ||
self.best_candidate_step = self._find_best_candidate( | ||
nominal_input=nominal_input, nominal_output=nominal_output | ||
) | ||
|
||
|
||
class InsertSeqMse(ExportPass): | ||
""" | ||
Insert Seq Mse Observer to find the best quant config for certain node's weight. | ||
""" | ||
|
||
seq_mse_ops = {torch.ops.aten.conv2d.default} | ||
|
||
def __init__(self, num_candidates=1000): | ||
super(InsertSeqMse, self).__init__() | ||
self.num_candidates = num_candidates | ||
|
||
def _insert_seq_mse( | ||
self, graph_module: torch.fx.GraphModule | ||
) -> torch.fx.GraphModule: | ||
count = 0 | ||
for node in graph_module.graph.nodes: | ||
if node.target in self.seq_mse_ops: | ||
# extract observer | ||
weight_node_obs = node.args[1] | ||
observer = getattr(graph_module, weight_node_obs.name) | ||
# extract parameters | ||
weight_node = weight_node_obs.args[0] | ||
weight_tensor = graph_module.get_parameter(weight_node.target).detach() | ||
bias_tensor = None | ||
if len(node.args) > 2 and node.args[2] is not None: | ||
bias_tensor = graph_module.get_parameter( | ||
node.args[2].args[0].target | ||
).detach() | ||
|
||
with graph_module.graph.inserting_after(node): | ||
seq_mse_mod = SeqMseModule( | ||
nominal_weight=weight_tensor, | ||
nominal_bias=bias_tensor, | ||
operator=node, | ||
observer=observer, | ||
num_candidates=self.num_candidates, | ||
) | ||
module_name = f"seq_mse_{count}" | ||
count += 1 | ||
setattr(graph_module, module_name, seq_mse_mod) | ||
input_nodes = (node.args[0], node) | ||
graph_module.graph.create_node( | ||
"call_module", module_name, input_nodes, {} | ||
) | ||
|
||
def call(self, graph_module: torch.fx.GraphModule): | ||
self._insert_seq_mse(graph_module) | ||
graph_module.recompile() | ||
return PassResult(graph_module, True) | ||
|
||
|
||
class RemoveSeqMse(ExportPass): | ||
""" | ||
Remove Seq Mse before invoking convert_pt2e and update final quantization encoding. | ||
""" | ||
|
||
def __init__(self): | ||
super(RemoveSeqMse, self).__init__() | ||
|
||
def _remove_seq_mse( | ||
self, graph_module: torch.fx.GraphModule | ||
) -> torch.fx.GraphModule: | ||
node_to_erase = [] | ||
for node in graph_module.graph.nodes: | ||
if node.op == "call_module": | ||
# try extracting SeqMse module | ||
module = getattr(graph_module, node.target) | ||
if isinstance(module, SeqMseModule): | ||
# rewrite observer method for pre-calculated scale | ||
scale, zero_point = module.observer.calculate_qparams() | ||
module.observer.updated_encoding = ( | ||
scale * module.best_candidate_step, | ||
zero_point, | ||
) | ||
module.observer.calculate_qparams = types.MethodType( | ||
lambda s: s.updated_encoding, module.observer | ||
) | ||
node_to_erase.append(node) | ||
|
||
for node in node_to_erase: | ||
graph_module.graph.erase_node(node) | ||
|
||
def call(self, graph_module: torch.fx.GraphModule): | ||
self._remove_seq_mse(graph_module) | ||
graph_module.recompile() | ||
return PassResult(graph_module, True) | ||
|
||
|
||
@contextmanager | ||
def SeqMSE(prepared_gm, num_candidates): | ||
prepared_gm = InsertSeqMse(num_candidates)(prepared_gm).graph_module | ||
try: | ||
yield | ||
finally: | ||
prepared_gm = RemoveSeqMse()(prepared_gm).graph_module |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
can't we just omit this?