Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 22 additions & 16 deletions kernels/portable/cpu/op_native_group_norm.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ void group_norm(
int64_t sC,
int64_t sHxW,
int64_t group,
CTYPE eps,
double eps,
Tensor& out,
Tensor& mean,
Tensor& rstd) {
Expand Down Expand Up @@ -77,37 +77,43 @@ void group_norm(
const CTYPE* x = input_data + i * inner_size;

// compute E[X] and Var[x] = E[x^2] - E[x]^2
CTYPE sum = reduce_add(x, inner_size);
CTYPE sq_sum = vec_powerf(x, inner_size);
CTYPE mean_value = sum / inner_size;
CTYPE variance = sq_sum / inner_size - mean_value * mean_value;
CTYPE std = std::sqrt(variance + eps);
CTYPE rstd_value = 1.0 / std;
CTYPE sum = reduce_add(x, static_cast<CTYPE>(inner_size));
CTYPE sq_sum = vec_powerf(x, static_cast<CTYPE>(inner_size));
double mean_value =
static_cast<double>(sum) / static_cast<double>(inner_size);
double variance =
static_cast<double>(sq_sum) / static_cast<double>(inner_size) -
mean_value * mean_value;
double std = std::sqrt(variance + eps);
double rstd_value = 1.0 / std;

// Calculate the elements of output
if (weight_data == nullptr && bias_data == nullptr) {
CTYPE* y = out_data + i * inner_size;
for (const auto j : c10::irange(inner_size)) {
y[j] = (x[j] - mean_value) * rstd_value;
y[j] = static_cast<CTYPE>(
(static_cast<double>(x[j]) - mean_value) * rstd_value);
}
} else {
const size_t g = i % G;
for (const auto j : c10::irange(D)) {
const size_t ch = g * D + j;
const CTYPE scale =
rstd_value * (weight_data == nullptr ? 1.0 : weight_data[ch]);
const CTYPE beta =
-scale * mean_value + (bias_data == nullptr ? 0.0 : bias_data[ch]);
const double scale = rstd_value *
(weight_data == nullptr ? double(1.0)
: static_cast<double>(weight_data[ch]));
const double beta = -scale * mean_value +
(bias_data == nullptr ? double(0.0)
: static_cast<double>(bias_data[ch]));
x = input_data + (i * D + j) * HxW;
CTYPE* y = out_data + (i * D + j) * HxW;
for (const auto k : c10::irange(HxW)) {
y[k] = scale * x[k] + beta;
y[k] = static_cast<CTYPE>(scale * static_cast<double>(x[k]) + beta);
}
}
}

mean_data[i] = mean_value;
rstd_data[i] = rstd_value;
mean_data[i] = static_cast<CTYPE>(mean_value);
rstd_data[i] = static_cast<CTYPE>(rstd_value);
}
}

Expand Down Expand Up @@ -186,7 +192,7 @@ std::tuple<Tensor&, Tensor&, Tensor&> native_group_norm_out(

constexpr auto name = "native_group_norm.out";

ET_SWITCH_FLOAT_TYPES(input.scalar_type(), ctx, name, CTYPE, [&]() {
ET_SWITCH_FLOATHBF16_TYPES(input.scalar_type(), ctx, name, CTYPE, [&]() {
group_norm<CTYPE>(
input, weight, bias, N, C, HxW, group, eps, out, mean_out, rstd_out);
});
Expand Down
Loading
Loading