Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion backends/qualcomm/quantizer/annotators.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,7 @@ def _is_float_tensor(node: Node):
or not isinstance(node.meta["val"], FakeTensor)
):
return False
return node.meta["val"].dtype == torch.float32
return node.meta["val"].dtype in (torch.bfloat16, torch.float32)


def _mark_nodes_as_annotated(nodes: List[Node]):
Expand Down
9 changes: 0 additions & 9 deletions backends/qualcomm/quantizer/qconfig.py
Original file line number Diff line number Diff line change
Expand Up @@ -205,7 +205,6 @@ def get_16a8w_qnn_qat_config(
quant_min=torch.iinfo(torch.uint16).min,
quant_max=torch.iinfo(torch.uint16).max,
qscheme=torch.per_tensor_affine,
reduce_range=True,
observer=act_observer.with_args(**extra_args),
)
act_quantization_spec = QuantizationSpec(
Expand All @@ -220,7 +219,6 @@ def get_16a8w_qnn_qat_config(
quant_min=torch.iinfo(torch.int8).min + 1,
quant_max=torch.iinfo(torch.int8).max,
qscheme=torch.per_tensor_symmetric,
reduce_range=True,
observer=MovingAverageMinMaxObserver,
)
weight_quantization_spec = QuantizationSpec(
Expand Down Expand Up @@ -421,7 +419,6 @@ def get_8a8w_qnn_qat_config(
quant_min=torch.iinfo(torch.int8).min + 1,
quant_max=torch.iinfo(torch.int8).max,
qscheme=torch.per_tensor_symmetric,
reduce_range=True,
observer=MovingAverageMinMaxObserver,
)
weight_quantization_spec = QuantizationSpec(
Expand All @@ -438,7 +435,6 @@ def get_8a8w_qnn_qat_config(
quant_min=torch.iinfo(torch.int32).min,
quant_max=torch.iinfo(torch.int32).max,
qscheme=torch.per_tensor_symmetric,
reduce_range=True,
observer=MovingAverageMinMaxObserver,
)
bias_quantization_spec = QuantizationSpec(
Expand Down Expand Up @@ -467,7 +463,6 @@ def get_16a4w_qnn_qat_config(
quant_min=torch.iinfo(torch.uint16).min,
quant_max=torch.iinfo(torch.uint16).max,
qscheme=torch.per_tensor_affine,
reduce_range=True,
observer=act_observer,
)
act_quantization_spec = QuantizationSpec(
Expand All @@ -484,7 +479,6 @@ def get_16a4w_qnn_qat_config(
quant_max=7,
qscheme=torch.per_tensor_symmetric,
ch_axis=0,
reduce_range=True,
observer=MovingAverageMinMaxObserver,
)
weight_quantization_spec = QuantizationSpec(
Expand All @@ -501,7 +495,6 @@ def get_16a4w_qnn_qat_config(
quant_min=torch.iinfo(torch.int32).min,
quant_max=torch.iinfo(torch.int32).max,
qscheme=torch.per_tensor_symmetric,
reduce_range=True,
observer=MovingAverageMinMaxObserver,
)
bias_quantization_spec = QuantizationSpec(
Expand Down Expand Up @@ -551,7 +544,6 @@ def get_qat_per_channel_quant_config(
act_fake_quant_ctr = FakeQuantize.with_args(
dtype=torch.int32 if act_dtype == torch.uint16 else act_dtype,
qscheme=torch.per_tensor_symmetric,
reduce_range=True,
observer=act_observer,
)
act_quantization_spec = QuantizationSpec(
Expand All @@ -566,7 +558,6 @@ def get_qat_per_channel_quant_config(
quant_min=torch.iinfo(act_dtype).min,
quant_max=torch.iinfo(act_dtype).max,
qscheme=torch.per_tensor_affine,
reduce_range=True,
observer=act_observer,
)
act_quantization_spec = QuantizationSpec(
Expand Down
Loading