Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
59 changes: 59 additions & 0 deletions backends/cadence/aot/ref_implementations.py
Original file line number Diff line number Diff line change
Expand Up @@ -960,6 +960,7 @@ def convolution(
_stride: tuple[int, int] | int = stride
_padding: tuple[int, int] | int = padding
_dilation: tuple[int, int] | int = dilation

if conv_is_1d:
conv = torch.nn.functional.conv1d
_stride = stride[0]
Expand All @@ -978,6 +979,64 @@ def convolution(
return conv_out


@impl(m, "transposed_convolution")
def transposed_convolution(
input_tensor: torch.Tensor,
weight: torch.Tensor,
bias: torch.Tensor,
stride: tuple[int, int],
padding: tuple[int, int],
dilation: tuple[int, int],
output_padding: tuple[int, int],
groups: int,
channel_last: bool = False,
) -> torch.Tensor:

conv_is_1d = len(input_tensor.shape) == 3
if channel_last:
if conv_is_1d:
input_tensor = input_tensor.movedim(-1, 1).contiguous()
if len(weight.shape) != 3:
raise ValueError("Weight tensor must be 3D if input is 3D")
weight = weight.movedim(-1, 1).contiguous()
else:
input_tensor = input_tensor.movedim(-1, -3)
if len(weight.shape) != 4:
raise ValueError("Weight tensor must be 4D if input is nd > 3")
weight = torch.permute(weight, (0, -1, 1, 2)).contiguous()

_stride: tuple[int, int] | int = stride
_padding: tuple[int, int] | int = padding
_dilation: tuple[int, int] | int = dilation
_output_padding: tuple[int, int] | int = output_padding
if conv_is_1d:
conv = torch.nn.functional.conv_transpose1d
_stride = stride[0]
_padding = padding[0]
_dilation = dilation[0]
_output_padding = output_padding[0]
else:
conv = torch.nn.functional.conv_transpose2d

conv_out = conv(
input_tensor,
weight,
bias,
_stride,
_padding,
_output_padding,
groups,
_dilation,
)
if channel_last:
if conv_is_1d:
conv_out = conv_out.movedim(1, -1).contiguous()
else:
conv_out = conv_out.movedim(-3, -1).contiguous()

return conv_out


@impl(m, "avg_pool2d")
def avg_pool2d(
input_tensor: torch.Tensor,
Expand Down
137 changes: 137 additions & 0 deletions backends/cadence/aot/tests/test_ref_implementations.py
Original file line number Diff line number Diff line change
Expand Up @@ -1534,6 +1534,143 @@ def test_convolution(
f"Output values don't match expected in {name}. Got {output}, expected {expected_output}",
)

@expand(
[
# Basic 2D transposed convolution with stride=1 (current test case - corrected name)
(
"basic_2d_stride1",
torch.tensor(
[[[[1.0, 2.0], [3.0, 4.0]]]], dtype=torch.float32
), # input: 1x1x2x2
torch.tensor(
[[[[1.0, 1.0], [1.0, 1.0]]]], dtype=torch.float32
), # weight: 1x1x2x2
torch.tensor([0.0], dtype=torch.float32), # bias
(1, 1), # stride
(0, 0), # padding
(1, 1), # dilation
1, # groups
(0, 0), # output_padding
False, # channel_last
torch.tensor(
[[[[1.0, 3.0, 2.0], [4.0, 10.0, 6.0], [3.0, 7.0, 4.0]]]],
dtype=torch.float32,
),
),
# 2D transposed convolution with channel_last=True (NHWC format)
(
"channel_last_nhwc",
torch.tensor(
[[[[1.0], [2.0]], [[3.0], [4.0]]]], dtype=torch.float32
), # input: 1x2x2x1 (NHWC)
torch.tensor(
[[[[1.0], [1.0]], [[1.0], [1.0]]]], dtype=torch.float32
), # weight: 1x2x2x1 (NHWC)
torch.tensor([0.0], dtype=torch.float32), # bias
(1, 1), # stride
(0, 0), # padding
(1, 1), # dilation
1, # groups
(0, 0), # output_padding
True, # channel_last=True
torch.tensor(
[
[
[[1.0], [3.0], [2.0]],
[[4.0], [10.0], [6.0]],
[[3.0], [7.0], [4.0]],
]
],
dtype=torch.float32,
),
),
# 2D transposed convolution with non-zero bias
(
"with_bias",
torch.tensor(
[[[[1.0, 2.0], [3.0, 4.0]]]], dtype=torch.float32
), # input: 1x1x2x2
torch.tensor(
[[[[1.0, 0.0], [0.0, 1.0]]]], dtype=torch.float32
), # weight: 1x1x2x2
torch.tensor([5.0], dtype=torch.float32), # bias=5.0
(1, 1), # stride
(0, 0), # padding
(1, 1), # dilation
1, # groups
(0, 0), # output_padding
False, # channel_last
torch.tensor(
[[[[6.0, 7.0, 5.0], [8.0, 10.0, 7.0], [5.0, 8.0, 9.0]]]],
dtype=torch.float32,
),
),
# 1D transposed convolution (3D tensor, NLC format)
(
"conv1d_nlc",
torch.tensor(
[[[1.0], [2.0], [3.0]]], dtype=torch.float32
), # input: 1x3x1 (NLC)
torch.tensor(
[[[1.0], [0.5]]], dtype=torch.float32
), # weight: 1x2x1 (NLC)
torch.tensor([0.0], dtype=torch.float32), # bias
(2, 0), # stride
(0, 0), # padding
(1, 1), # dilation
1, # groups
(0, 0), # output_padding
True, # channel_last=True
torch.tensor(
[[[1.0], [0.5], [2.0], [1.0], [3.0], [1.5]]], dtype=torch.float32
),
),
]
)
def test_transposed_convolution(
self,
name: str,
input_tensor: torch.Tensor,
weight: torch.Tensor,
bias: torch.Tensor,
stride: tuple[int, int],
padding: tuple[int, int],
dilation: tuple[int, int],
groups: int,
output_padding: tuple[int, int],
channel_last: bool,
expected_output: torch.Tensor,
) -> None:
output = torch.ops.cadence.transposed_convolution(
input_tensor,
weight,
bias,
stride,
padding,
dilation,
output_padding,
groups,
channel_last,
)

# Verify output properties
self.assertEqual(
output.dtype,
input_tensor.dtype,
f"Output dtype should match input dtype in {name}",
)
self.assertEqual(
output.shape,
expected_output.shape,
f"Output shape should match expected shape in {name}",
)

# Verify output matches expected values
self.assertTrue(
torch.equal(output, expected_output),
f"Output values don't match expected in {name}. Got {output}, expected {expected_output}",
)

@expand(
[
# Basic non-quantized average pooling
Expand Down
Loading