Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
251 changes: 251 additions & 0 deletions kernels/portable/cpu/op_topk.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,251 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/

#include <cmath>
#include <tuple>

#include <executorch/runtime/kernel/kernel_includes.h>

namespace torch {
namespace executor {
namespace native {
namespace {

bool check_topk_args(
const Tensor& in,
int64_t k,
int64_t dim,
Tensor& values,
Tensor& indices) {
ET_LOG_AND_RETURN_IF_FALSE(tensors_have_same_dtype(in, values));
ET_LOG_AND_RETURN_IF_FALSE(indices.scalar_type() == ScalarType::Long);
ET_LOG_AND_RETURN_IF_FALSE(tensor_has_dim(in, dim));
if (dim < 0) {
dim += nonzero_dim(in);
}
ET_LOG_MSG_AND_RETURN_IF_FALSE(
k >= 0 && k <= nonempty_size(in, dim), "selected index k out of range");
return true;
}

bool get_topk_target_size(
const Tensor& in,
int64_t k,
int64_t dim,
Tensor::SizesType* target_size,
size_t* target_dim) {
*target_dim = in.dim();
for (size_t i = 0; i < *target_dim; ++i) {
if (i == dim) {
target_size[i] = k;
} else {
target_size[i] = in.size(i);
}
}
return true;
}

template <typename CTYPE, typename elem_t = std::pair<CTYPE, int64_t>>
void perform_topk(
const Tensor& in,
int64_t k,
int64_t dim,
bool largest,
bool sorted,
Tensor& values,
Tensor& indices,
elem_t* queue) {
const CTYPE* const in_data = in.const_data_ptr<CTYPE>();
CTYPE* values_data = values.mutable_data_ptr<CTYPE>();
long* indices_data = indices.mutable_data_ptr<long>();

if (in.dim() == 0) {
values_data[0] = in_data[0];
indices_data[0] = 0;
return;
}

if (k == 0) {
return;
}

const size_t outer_size = getLeadingDims(in, dim);

const size_t dim_size = in.size(dim);
const size_t dim_stride = in.strides()[dim];

const size_t outer_stride_in = dim_size * dim_stride;
const size_t outer_stride_out = k * dim_stride;

bool use_partial_sort = k * 64 <= dim_size;

// Loop through all outer dimensions
for (size_t outer_idx = 0; outer_idx < outer_size; ++outer_idx) {
size_t outer_in = outer_idx * outer_stride_in;
size_t outer_out = outer_idx * outer_stride_out;
// Loop through all inner dimensions
for (size_t inner_idx = 0; inner_idx < dim_stride; ++inner_idx) {
size_t base_in = outer_in + inner_idx;
size_t base_out = outer_out + inner_idx;

// Populate the queue with the values from the input tensor
for (size_t i = 0; i < dim_size; ++i) {
size_t in_ix = base_in + i * dim_stride;
queue[i].first = in_data[in_ix];
queue[i].second = i;
}

// Perform topk on the queue
if (use_partial_sort) {
if (largest) {
std::partial_sort(
queue,
queue + k,
queue + dim_size,
[](const elem_t& x, const elem_t& y) -> bool {
return (
(std::isnan(x.first) && !std::isnan(y.first)) ||
(x.first > y.first));
});
} else {
std::partial_sort(
queue,
queue + k,
queue + dim_size,
[](const elem_t& x, const elem_t& y) -> bool {
return (
(!std::isnan(x.first) && std::isnan(y.first)) ||
(x.first < y.first));
});
}
} else {
if (largest) {
std::nth_element(
queue,
queue + k - 1,
queue + dim_size,
[](const elem_t& x, const elem_t& y) -> bool {
return (
(std::isnan(x.first) && !std::isnan(y.first)) ||
(x.first > y.first));
});
if (sorted) {
std::sort(
queue,
queue + k - 1,
[](const elem_t& x, const elem_t& y) -> bool {
return (
(std::isnan(x.first) && !std::isnan(y.first)) ||
(x.first > y.first));
});
}
} else {
std::nth_element(
queue,
queue + k - 1,
queue + dim_size,
[](const elem_t& x, const elem_t& y) -> bool {
return (
(!std::isnan(x.first) && std::isnan(y.first)) ||
(x.first < y.first));
});
if (sorted) {
std::sort(
queue,
queue + k - 1,
[](const elem_t& x, const elem_t& y) -> bool {
return (
(!std::isnan(x.first) && std::isnan(y.first)) ||
(x.first < y.first));
});
}
}
}

// Write the topk values and indices to the output tensors
for (size_t i = 0; i < k; ++i) {
size_t out_ix = base_out + i * dim_stride;

values_data[out_ix] = queue[i].first;
indices_data[out_ix] = queue[i].second;
}
}
}
}

void* allocate_temp_memory(RuntimeContext& ctx, size_t size) {
Result<void*> temp_mem_res = ctx.allocate_temp(size);
return temp_mem_res.ok() ? temp_mem_res.get() : nullptr;
}

} // namespace

std::tuple<Tensor&, Tensor&> topk_values(
RuntimeContext& ctx,
const Tensor& in,
int64_t k,
int64_t dim,
bool largest,
bool sorted,
Tensor& values,
Tensor& indices) {
auto out = std::tuple<Tensor&, Tensor&>({values, indices});

ET_KERNEL_CHECK(
ctx, check_topk_args(in, k, dim, values, indices), InvalidArgument, out);

if (dim < 0) {
dim += nonzero_dim(in);
}

// @lint-ignore CLANGTIDY facebook-hte-CArray
Tensor::SizesType target_size[kTensorDimensionLimit];
size_t target_dim = 0;
get_topk_target_size(in, k, dim, target_size, &target_dim);

ET_KERNEL_CHECK(
ctx,
resize_tensor(values, {target_size, target_dim}) == Error::Ok,
InvalidArgument,
out);

ET_KERNEL_CHECK(
ctx,
resize_tensor(indices, {target_size, target_dim}) == Error::Ok,
InvalidArgument,
out);

constexpr auto name = "topk.values";

if (in.numel() == 0 || (k == 0 && in.dim() > 0)) {
return out;
}

bool temp_mem_allocated = false;

ET_SWITCH_REALH_TYPES(in.scalar_type(), ctx, name, CTYPE, [&]() {
using elem_t = std::pair<CTYPE, int64_t>;
size_t temp_mem_size = nonempty_size(in, dim) * sizeof(elem_t);

elem_t* queue = (elem_t*)allocate_temp_memory(ctx, temp_mem_size);
if (queue == nullptr) {
return;
}
temp_mem_allocated = true;

perform_topk<CTYPE>(in, k, dim, largest, sorted, values, indices, queue);
});

ET_KERNEL_CHECK(ctx, temp_mem_allocated, MemoryAllocationFailed, out);

return out;
}

} // namespace native
} // namespace executor
} // namespace torch
5 changes: 5 additions & 0 deletions kernels/portable/functions.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -847,6 +847,11 @@
- arg_meta: null
kernel_name: torch::executor::tanh_out

- op: topk.values
kernels:
- arg_meta: null
kernel_name: torch::executor::topk_values

- op: transpose_copy.int_out
kernels:
- arg_meta: null
Expand Down
Loading
Loading