Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions kernels/aten/functions.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -243,6 +243,8 @@

- op: masked_scatter.out

- op: masked_select.out

- op: max_pool2d_with_indices.out

- op: max.dim_max
Expand Down
148 changes: 148 additions & 0 deletions kernels/portable/cpu/op_masked_select.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,148 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/

#include <executorch/kernels/portable/cpu/util/broadcast_util.h>
#include <executorch/runtime/kernel/kernel_includes.h>

namespace torch {
namespace executor {
namespace native {

Tensor& masked_select_out(
KernelRuntimeContext& ctx,
const Tensor& in,
const Tensor& mask,
Tensor& out) {
ScalarType in_type = in.scalar_type();

ET_KERNEL_CHECK(
ctx,
executorch::runtime::tensor_is_realhbbf16_type(in),
InvalidArgument,
out);

ET_KERNEL_CHECK(
ctx, mask.scalar_type() == ScalarType::Bool, InvalidArgument, out);
ET_KERNEL_CHECK(ctx, out.scalar_type() == in_type, InvalidArgument, out);

ET_KERNEL_CHECK(
ctx, tensors_have_same_dim_order(in, mask, out), InvalidArgument, out);

ET_KERNEL_CHECK(
ctx, tensors_are_broadcastable_between(in, mask), InvalidArgument, out);

// If input or mask is empty, the output should be empty
if (in.numel() == 0 || mask.numel() == 0) {
ET_KERNEL_CHECK(
ctx, resize_tensor(out, {0}) == Error::Ok, InvalidArgument, out);
return out;
}

// Compute the shape resulting from broadcasting the mask against the input
size_t broadcast_ndim = 0;
Tensor::SizesType broadcast_sizes[kTensorDimensionLimit];
Error err = get_broadcast_target_size(
in, mask, broadcast_sizes, kTensorDimensionLimit, &broadcast_ndim);
if (err != Error::Ok) {
ET_KERNEL_CHECK_MSG(
ctx, false, InvalidArgument, out, "Failed to broadcast input and mask");
}
size_t broadcast_numel = 1;
for (size_t i = 0; i < broadcast_ndim; i++) {
broadcast_numel *= broadcast_sizes[i];
}

// Compute the number of out elements
size_t mask_true_count = 0;
const bool* const mask_data = mask.const_data_ptr<bool>();
for (size_t i = 0; i < mask.numel(); ++i) {
if (mask_data[i]) {
mask_true_count++;
}
}
Tensor::SizesType out_numel =
mask_true_count * (broadcast_numel / mask.numel());

// Resize the out tensor
ET_KERNEL_CHECK(
ctx, resize_tensor(out, {out_numel}) == Error::Ok, InvalidArgument, out);

const char* const in_data =
reinterpret_cast<const char*>(in.const_data_ptr());
char* const out_data = reinterpret_cast<char*>(out.mutable_data_ptr());
const auto elem_size = in.element_size();

// Figure out if `in` is broadcasted
bool in_is_broadcasted = false;
if (in.dim() != broadcast_ndim) {
in_is_broadcasted = true;
} else {
for (size_t i = 0; i < in.dim(); ++i) {
if (in.size(i) != broadcast_sizes[i]) {
in_is_broadcasted = true;
}
}
}

// Figure out if `mask` is broadcasted
bool mask_is_broadcasted = false;
if (mask.dim() != broadcast_ndim) {
mask_is_broadcasted = true;
} else {
for (size_t i = 0; i < mask.dim(); ++i) {
if (mask.size(i) != broadcast_sizes[i]) {
mask_is_broadcasted = true;
}
}
}

// Figure out if either `in` or `mask` is broadcasted
bool any_is_broadcasted = (in_is_broadcasted || mask_is_broadcasted);

size_t out_ix = 0;
for (size_t i = 0; i < broadcast_numel; ++i) {
size_t in_linear_index = i;
size_t mask_linear_index = i;

// If either `in` or `mask` is broadcasted, we need to compute the indexes
// in the broadcasted space.
if (any_is_broadcasted) {
size_t broadcast_indexes[kTensorDimensionLimit];
delinearize_index(
i,
{broadcast_sizes, broadcast_ndim},
broadcast_indexes,
kTensorDimensionLimit);

if (in_is_broadcasted) {
in_linear_index =
linearize_access_indexes(broadcast_indexes, broadcast_ndim, in);
}
if (mask_is_broadcasted) {
mask_linear_index =
linearize_access_indexes(broadcast_indexes, broadcast_ndim, mask);
}
}

// If the mask is true, copy the value from `in` to `out` and increment the
// `out_ix`
if (mask_data[mask_linear_index]) {
memcpy(
out_data + out_ix * elem_size,
in_data + in_linear_index * elem_size,
elem_size);
out_ix++;
}
}

return out;
}

} // namespace native
} // namespace executor
} // namespace torch
5 changes: 5 additions & 0 deletions kernels/portable/functions.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -547,6 +547,11 @@
- arg_meta: null
kernel_name: torch::executor::masked_scatter_out

- op: masked_select.out
kernels:
- arg_meta: null
kernel_name: torch::executor::masked_select_out

- op: max.dim_max
kernels:
- arg_meta: null
Expand Down
115 changes: 115 additions & 0 deletions kernels/test/op_masked_select_test.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/

#include <executorch/kernels/test/FunctionHeaderWrapper.h> // Declares the operator
#include <executorch/kernels/test/TestUtil.h>
#include <executorch/kernels/test/supported_features.h>
#include <executorch/runtime/core/exec_aten/exec_aten.h>
#include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h>
#include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h>

#include <gtest/gtest.h>

using namespace ::testing;
using exec_aten::ScalarType;
using exec_aten::Tensor;
using torch::executor::testing::SupportedFeatures;
using torch::executor::testing::TensorFactory;

class OpMaskedSelectOutTest : public OperatorTest {
protected:
Tensor&
op_masked_select_out(const Tensor& in, const Tensor& mask, Tensor& out) {
return torch::executor::aten::masked_select_outf(context_, in, mask, out);
}
};

TEST_F(OpMaskedSelectOutTest, SmokeTest) {
TensorFactory<ScalarType::Int> tf;
TensorFactory<ScalarType::Bool> tfBool;

Tensor in = tf.make({2, 3}, {1, 2, 3, 4, 5, 6});
Tensor mask = tfBool.make({2, 3}, {true, false, false, true, false, true});
Tensor out = tf.zeros({3});

op_masked_select_out(in, mask, out);
EXPECT_TENSOR_EQ(out, tf.make({3}, {1, 4, 6}));
}

TEST_F(OpMaskedSelectOutTest, BroadcastInput) {
TensorFactory<ScalarType::Int> tf;
TensorFactory<ScalarType::Bool> tfBool;

Tensor in = tf.make({3}, {1, 2, 3});
Tensor mask = tfBool.make({2, 3}, {true, false, false, true, false, true});
Tensor out = tf.zeros({3});

op_masked_select_out(in, mask, out);
EXPECT_TENSOR_EQ(out, tf.make({3}, {1, 1, 3}));
}

TEST_F(OpMaskedSelectOutTest, BroadcastMask) {
TensorFactory<ScalarType::Int> tf;
TensorFactory<ScalarType::Bool> tfBool;

Tensor in = tf.make({2, 3}, {1, 2, 3, 4, 5, 6});
Tensor mask = tfBool.make({3}, {false, true, false});

Tensor out = tf.zeros({2});

op_masked_select_out(in, mask, out);
EXPECT_TENSOR_EQ(out, tf.make({2}, {2, 5}));
}

TEST_F(OpMaskedSelectOutTest, BroadcastInputAndMask) {
TensorFactory<ScalarType::Int> tf;
TensorFactory<ScalarType::Bool> tfBool;

Tensor in = tf.ones({2, 3, 4, 1});
Tensor mask = tfBool.ones({2, 1, 1, 5});
Tensor out = tf.zeros({120});

op_masked_select_out(in, mask, out);
EXPECT_TENSOR_EQ(out, tf.ones({120}));
}

TEST_F(OpMaskedSelectOutTest, EmptyInput) {
TensorFactory<ScalarType::Int> tf;
TensorFactory<ScalarType::Bool> tfBool;

Tensor in = tf.make({2, 0}, {});
Tensor mask = tfBool.make({2, 1}, {true, true});
Tensor out = tf.zeros({0});

op_masked_select_out(in, mask, out);
EXPECT_TENSOR_EQ(out, tf.make({0}, {}));
}

TEST_F(OpMaskedSelectOutTest, EmptyMask) {
TensorFactory<ScalarType::Int> tf;
TensorFactory<ScalarType::Bool> tfBool;

Tensor in = tf.make({2, 1}, {100, 200});
Tensor mask = tfBool.make({2, 0}, {});
Tensor out = tf.zeros({0});

op_masked_select_out(in, mask, out);
EXPECT_TENSOR_EQ(out, tf.make({0}, {}));
}

TEST_F(OpMaskedSelectOutTest, EmptyInputAndMask) {
TensorFactory<ScalarType::Int> tf;
TensorFactory<ScalarType::Bool> tfBool;

Tensor in = tf.make({2, 0}, {});
Tensor mask = tfBool.make({0}, {});
Tensor out = tf.zeros({0});

op_masked_select_out(in, mask, out);
EXPECT_TENSOR_EQ(out, tf.make({0}, {}));
}
1 change: 1 addition & 0 deletions kernels/test/targets.bzl
Original file line number Diff line number Diff line change
Expand Up @@ -255,6 +255,7 @@ def define_common_targets():
_common_op_test("op_lt_test", ["aten", "portable"])
_common_op_test("op_masked_fill_test", ["aten", "portable"])
_common_op_test("op_masked_scatter_test", ["aten", "portable"])
_common_op_test("op_masked_select_test", ["aten", "portable"])
_common_op_test("op_max_test", ["aten", "portable"])
_common_op_test("op_max_pool2d_with_indices_test", ["aten", "portable"])
_common_op_test("op_maximum_test", ["aten", "portable"])
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -789,6 +789,12 @@ ATEN_OPS = (
"//executorch/kernels/portable/cpu/util:broadcast_util",
],
),
op_target(
name = "op_masked_select",
deps = [
"//executorch/kernels/portable/cpu/util:broadcast_util",
],
),
op_target(
name = "op_max",
deps = [
Expand Down
Loading