Skip to content

Functions (methods) decorated by _use_grad_for_differentiable lose their docstrings and signatures #103566

@wenh06

Description

@wenh06

🐛 Describe the bug

The original _use_grad_for_differentiable function makes functions (methods) lose their docstrings and signatures, as shown in the following screenshot:

_use_grad_for_differentiable_original

The code:

import torch
model = torch.nn.Linear(10,20)
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

It can be solved by adding

_use_grad.__doc__ = func.__doc__
_use_grad.__signature__ = inspect.signature(func)

in this decorator. The full code is

def _use_grad_for_differentiable(func):
    def _use_grad(self, *args, **kwargs):
        prev_grad = torch.is_grad_enabled()
        try:
            torch.set_grad_enabled(self.defaults['differentiable'])
            ret = func(self, *args, **kwargs)
        finally:
            torch.set_grad_enabled(prev_grad)
        return ret
    _use_grad.__doc__ = func.__doc__
    _use_grad.__signature__ = inspect.signature(func)
    return _use_grad

Screenshot after this modification:
_use_grad_for_differentiable_enhanced

Versions

PyTorch version: 1.13.1+cu116
Is debug build: False
CUDA used to build PyTorch: 11.6
ROCM used to build PyTorch: N/A

OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
Clang version: Could not collect
CMake version: version 3.26.4
Libc version: glibc-2.31

Python version: 3.8.10 (default, Mar 13 2023, 10:26:41) [GCC 9.4.0] (64-bit runtime)
Python platform: Linux-5.15.0-72-generic-x86_64-with-glibc2.29
Is CUDA available: True
CUDA runtime version: 11.3.109
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA GeForce RTX 3090
GPU 1: NVIDIA GeForce RTX 3090

Nvidia driver version: 510.60.02
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.4.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.4.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.4.1
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.4.1
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.4.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.4.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.4.1
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 46 bits physical, 48 bits virtual
CPU(s): 40
On-line CPU(s) list: 0-39
Thread(s) per core: 2
Core(s) per socket: 20
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz
Stepping: 7
CPU MHz: 2100.000
CPU max MHz: 4000.0000
CPU min MHz: 800.0000
BogoMIPS: 4200.00
Virtualization: VT-x
L1d cache: 640 KiB
L1i cache: 640 KiB
L2 cache: 20 MiB
L3 cache: 27.5 MiB
NUMA node0 CPU(s): 0-39
Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Retbleed: Mitigation; Enhanced IBRS
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Mitigation; TSX disabled
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req pku ospke avx512_vnni md_clear flush_l1d arch_capabilities

Versions of relevant libraries:
[pip3] flake8==5.0.4
[pip3] mypy-extensions==0.4.3
[pip3] numpy==1.23.5
[pip3] pytorch-ranger==0.1.1
[pip3] torch==1.13.1+cu116
[pip3] torch-ecg==0.0.27
[pip3] torch-optimizer==0.3.0
[pip3] torch-ort==1.9.0.dev20210702
[pip3] torch-tb-profiler==0.2.0
[pip3] torchaudio==0.13.1+cu116
[pip3] torchinfo==1.4.4
[pip3] torchsummary==1.5.1
[pip3] torchvision==0.14.1+cu116
[conda] Could not collect

cc @svekars @carljparker @vincentqb @jbschlosser @albanD @janeyx99

Metadata

Metadata

Assignees

No one assigned

    Labels

    module: docsRelated to our documentation, both in docs/ and docblocksmodule: optimizerRelated to torch.optimtriagedThis issue has been looked at a team member, and triaged and prioritized into an appropriate module

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions