Skip to content

Inconsistency between torchvision.datasets.cifar.CIFAR10.data return and torchvision.datasets.cifar.CIFAR10.__getitem__() #126645

Closed
@CircuitsOfAIM

Description

@CircuitsOfAIM

🐛 Describe the bug

It is intuitive to access training and/or target data in torchvision.datasets.cifar.CIFAR10 class with torchvision.datasets.cifar.CIFAR10.data or torchvision.datasets.cifar.CIFAR10.target.

ISSUE when transform applied these values are different from values acquired using indices i.e. train_dataset[0] done by__getitem__()

import torch
import torchvision.datasets as datasets
import torchvision.transforms as transforms


train_dataset =  datasets.CIFAR10(root='./data', train=True, download=True, transform=train_transforms)
train_transforms = transforms.Compose([
    transforms.RandomHorizontalFlip(p=0.5),
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
with_data=train_dataset.data[0,0,0,:]
with_idx,_=train_dataset[0][:,0,0].numpy()

print(with_data == with_idx)

Versions

PyTorch version: 2.3.0+cpu
Is debug build: False
CUDA used to build PyTorch: None
ROCM used to build PyTorch: N/A

Python version: 3.11.5 |
Is CUDA available: False
Is XNNPACK available: True

[pip3] numpy==1.26.2
[pip3] torch==2.3.0
[pip3] torchsummary==1.5.1
[pip3] torchvision==0.18.0
[conda] mkl 2021.4.0 pypi_0 pypi
[conda] numpy 1.26.2 pypi_0 pypi
[conda] torch 2.3.0 pypi_0 pypi
[conda] torchsummary 1.5.1 pypi_0 pypi
[conda] torchvision 0.18.0 pypi_0 pypi

### Tasks

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions