Skip to content

Misleading Error when doing Large Batch Matrix Multiplication #21061

@askliar

Description

@askliar

🐛 Bug

When doing Batch Matrix Multiplication in Pytorch 1.1.0, when too much memory is needed, instead of throwing a meaningful error (the way it was in previous versions e.g. Buy new RAM!),
Pytorch RuntimeError: [enforce fail at CPUAllocator.cpp:56] posix_memalign(&data, gAlignment, nbytes) == 0. 12 vs 0 error is thrown as also mentioned here.

Environment

PyTorch version: 1.1.0
Is debug build: No
CUDA used to build PyTorch: 10.0.130

OS: Ubuntu 18.04.2 LTS
GCC version: (Ubuntu 7.3.0-27ubuntu1~18.04) 7.3.0
CMake version: version 3.10.2

Python version: 3.7
Is CUDA available: Yes
CUDA runtime version: Could not collect
GPU models and configuration: GPU 0: GeForce RTX 2080 Ti
Nvidia driver version: 410.93
cuDNN version: Could not collect

Versions of relevant libraries:
[pip3] numpy==1.16.2
[conda] blas 1.0 mkl
[conda] botorch 0.1.0 pypi_0 pypi
[conda] gpytorch 0.3.2 pypi_0 pypi
[conda] mkl 2019.1 144
[conda] mkl-service 1.1.2 py37he904b0f_5
[conda] mkl_fft 1.0.10 py37ha843d7b_0
[conda] mkl_random 1.0.2 py37hd81dba3_0
[conda] pytorch 1.1.0 py3.7_cuda10.0.130_cudnn7.5.1_0 pytorch
[conda] torch-cluster 1.2.4 pypi_0 pypi
[conda] torch-geometric 1.1.2 pypi_0 pypi
[conda] torch-scatter 1.1.2 pypi_0 pypi
[conda] torch-sparse 0.2.4 pypi_0 pypi
[conda] torchvision 0.3.0 py37_cu10.0.130_1 pytorch

Metadata

Metadata

Assignees

No one assigned

    Labels

    module: cudaRelated to torch.cuda, and CUDA support in generaltriagedThis issue has been looked at a team member, and triaged and prioritized into an appropriate module

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions