-
Notifications
You must be signed in to change notification settings - Fork 25.2k
Closed
Description
I am running this code on google colab:
from __future__ import print_function
import os
import itertools
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
from ssd import SSD300
from multibox_loss import MultiBoxLoss
from torch.autograd import Variable
lr = 1e-3
resume = ''
use_cuda = torch.cuda.is_available()
best_loss = float('inf') # best test loss
start_epoch = 0 # start from epoch 0 or last epoch
# Data
print('==> Preparing data..')
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))])
trainset = ListDataset(root='Images', list_file='itrain.txt', train=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True, num_workers=4)
testset = ListDataset(root='Images', list_file='itest.txt', train=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=32, shuffle=False, num_workers=4)
# Model
net = SSD300()
if resume:
print('==> Resuming from checkpoint..')
checkpoint = torch.load('checkpoint/ckpt.pth')
net.load_state_dict(checkpoint['net'])
best_loss = checkpoint['loss']
start_epoch = checkpoint['epoch']
else:
# Convert from pretrained VGG model.
net.load_state_dict(torch.load('ssd.pth'))
criterion = MultiBoxLoss()
if use_cuda:
#net = torch.nn.DataParallel(net, device_ids=[0,1,2,3,4,5,6,7])
net.cuda()
cudnn.benchmark = True
optimizer = optim.SGD(net.parameters(), lr=lr, momentum=0.9, weight_decay=1e-4)
This is the error i am getting:
RuntimeError Traceback (most recent call last)
<ipython-input-45-1d68494f6580> in <module>()
62 if use_cuda:
63 #net = torch.nn.DataParallel(net, device_ids=[0,1,2,3,4,5,6,7])
---> 64 net.cuda()
65 cudnn.benchmark = True
66
/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py in cuda(self, device)
247 Module: self
248 """
--> 249 return self._apply(lambda t: t.cuda(device))
250
251 def cpu(self):
/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py in _apply(self, fn)
174 def _apply(self, fn):
175 for module in self.children():
--> 176 module._apply(fn)
177
178 for param in self._parameters.values():
/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py in _apply(self, fn)
174 def _apply(self, fn):
175 for module in self.children():
--> 176 module._apply(fn)
177
178 for param in self._parameters.values():
/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py in _apply(self, fn)
180 # Tensors stored in modules are graph leaves, and we don't
181 # want to create copy nodes, so we have to unpack the data.
--> 182 param.data = fn(param.data)
183 if param._grad is not None:
184 param._grad.data = fn(param._grad.data)
/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py in <lambda>(t)
247 Module: self
248 """
--> 249 return self._apply(lambda t: t.cuda(device))
250
251 def cpu(self):
RuntimeError: cuda runtime error (59) : device-side assert triggered at /pytorch/aten/src/THC/generic/THCTensorCopy.c:20
zarifaziz
Metadata
Metadata
Assignees
Labels
No labels