-
Notifications
You must be signed in to change notification settings - Fork 25.5k
update the baseline data for the operator benchmark #162693
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
🔗 Helpful Links🧪 See artifacts and rendered test results at hud.pytorch.org/pr/162693
Note: Links to docs will display an error until the docs builds have been completed. ✅ No FailuresAs of commit 4720751 with merge base 6b59a19 ( This comment was automatically generated by Dr. CI and updates every 15 minutes. |
@pytorchbot label "topic: not user facing" |
@pytorchbot label "ciflow/op-benchmark" |
To add these label(s) (ciflow/op-benchmark) to the PR, please first approve the workflows that are awaiting approval (scroll to the bottom of this page). This helps ensure we don't trigger CI on this PR until it is actually authorized to do so. Please ping one of the reviewers if you do not have access to approve and run workflows. |
@pytorchbot label "ciflow/op-benchmark" |
@pytorchbot rebase -b main |
@pytorchbot started a rebase job onto refs/remotes/origin/main. Check the current status here |
Successfully rebased |
c6a01ca
to
4720751
Compare
@LifengWang The fix up PR for operator benchmarks #162744 has been landed in main. Please rebase to get the latest changes |
@pytorchmergebot merge |
Merge startedYour change will be merged once all checks pass (ETA 0-4 Hours). Learn more about merging in the wiki. Questions? Feedback? Please reach out to the PyTorch DevX Team |
According to the results of the last four operator benchmark runs, we found that five models achieved more than a 30% improvement compared to the baseline. Therefore, we will update the operator benchmark baseline data. We use the average results from the four runs as the new baseline for the five models. And add a pull request trigger for the operator benchmark workflow Benchmarking Framework | Benchmarking Module Name | Case Name | tag | run_backward | baseline old | r1 | r2 | r3 | r4 | avg | speedup -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- PyTorch | add | add_M1_N1_K1_cpu | short | FALSE | 3.9497 | 2.57 | 2.54 | 2.38 | 2.31 | 2.45 | 1.61 PyTorch | functional.hardtanh | functional.hardtanh_dims(512 512)_contigFalse_inplaceFalse_dtypetorch.quint8 | short | FALSE | 67.118 | 50.02 | 49.80 | 46.78 | 48.94 | 48.88 | 1.37 PyTorch | relu6 | relu6_dims(512 512)_contigFalse_inplaceFalse_dtypetorch.quint8 | short | FALSE | 68.739 | 51.17 | 51.19 | 48.07 | 50.42 | 50.21 | 1.37 PyTorch | relu6 | relu6_dims(256 1024)_contigFalse_inplaceFalse_dtypetorch.quint8 | short | FALSE | 69.1875 | 51.97 | 52.77 | 50.00 | 51.24 | 51.50 | 1.34 PyTorch | functional.hardtanh | functional.hardtanh_dims(256 1024)_contigFalse_inplaceFalse_dtypetorch.quint8 | short | FALSE | 67.436 | 50.98 | 51.69 | 49.06 | 49.87 | 50.40 | 1.34 @chuanqi129 @huydhn @desertfire @jainapurva Pull Request resolved: pytorch#162693 Approved by: https://github.com/huydhn
According to the results of the last four operator benchmark runs, we found that five models achieved more than a 30% improvement compared to the baseline. Therefore, we will update the operator benchmark baseline data. We use the average results from the four runs as the new baseline for the five models. And add a pull request trigger for the operator benchmark workflow Benchmarking Framework | Benchmarking Module Name | Case Name | tag | run_backward | baseline old | r1 | r2 | r3 | r4 | avg | speedup -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- PyTorch | add | add_M1_N1_K1_cpu | short | FALSE | 3.9497 | 2.57 | 2.54 | 2.38 | 2.31 | 2.45 | 1.61 PyTorch | functional.hardtanh | functional.hardtanh_dims(512 512)_contigFalse_inplaceFalse_dtypetorch.quint8 | short | FALSE | 67.118 | 50.02 | 49.80 | 46.78 | 48.94 | 48.88 | 1.37 PyTorch | relu6 | relu6_dims(512 512)_contigFalse_inplaceFalse_dtypetorch.quint8 | short | FALSE | 68.739 | 51.17 | 51.19 | 48.07 | 50.42 | 50.21 | 1.37 PyTorch | relu6 | relu6_dims(256 1024)_contigFalse_inplaceFalse_dtypetorch.quint8 | short | FALSE | 69.1875 | 51.97 | 52.77 | 50.00 | 51.24 | 51.50 | 1.34 PyTorch | functional.hardtanh | functional.hardtanh_dims(256 1024)_contigFalse_inplaceFalse_dtypetorch.quint8 | short | FALSE | 67.436 | 50.98 | 51.69 | 49.06 | 49.87 | 50.40 | 1.34 @chuanqi129 @huydhn @desertfire @jainapurva Pull Request resolved: pytorch#162693 Approved by: https://github.com/huydhn
According to the results of the last four operator benchmark runs, we found that five models achieved more than a 30% improvement compared to the baseline. Therefore, we will update the operator benchmark baseline data. We use the average results from the four runs as the new baseline for the five models. And add a pull request trigger for the operator benchmark workflow Benchmarking Framework | Benchmarking Module Name | Case Name | tag | run_backward | baseline old | r1 | r2 | r3 | r4 | avg | speedup -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- PyTorch | add | add_M1_N1_K1_cpu | short | FALSE | 3.9497 | 2.57 | 2.54 | 2.38 | 2.31 | 2.45 | 1.61 PyTorch | functional.hardtanh | functional.hardtanh_dims(512 512)_contigFalse_inplaceFalse_dtypetorch.quint8 | short | FALSE | 67.118 | 50.02 | 49.80 | 46.78 | 48.94 | 48.88 | 1.37 PyTorch | relu6 | relu6_dims(512 512)_contigFalse_inplaceFalse_dtypetorch.quint8 | short | FALSE | 68.739 | 51.17 | 51.19 | 48.07 | 50.42 | 50.21 | 1.37 PyTorch | relu6 | relu6_dims(256 1024)_contigFalse_inplaceFalse_dtypetorch.quint8 | short | FALSE | 69.1875 | 51.97 | 52.77 | 50.00 | 51.24 | 51.50 | 1.34 PyTorch | functional.hardtanh | functional.hardtanh_dims(256 1024)_contigFalse_inplaceFalse_dtypetorch.quint8 | short | FALSE | 67.436 | 50.98 | 51.69 | 49.06 | 49.87 | 50.40 | 1.34 @chuanqi129 @huydhn @desertfire @jainapurva Pull Request resolved: pytorch#162693 Approved by: https://github.com/huydhn
According to the results of the last four operator benchmark runs, we found that five models achieved more than a 30% improvement compared to the baseline. Therefore, we will update the operator benchmark baseline data. We use the average results from the four runs as the new baseline for the five models. And add a pull request trigger for the operator benchmark workflow Benchmarking Framework | Benchmarking Module Name | Case Name | tag | run_backward | baseline old | r1 | r2 | r3 | r4 | avg | speedup -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- PyTorch | add | add_M1_N1_K1_cpu | short | FALSE | 3.9497 | 2.57 | 2.54 | 2.38 | 2.31 | 2.45 | 1.61 PyTorch | functional.hardtanh | functional.hardtanh_dims(512 512)_contigFalse_inplaceFalse_dtypetorch.quint8 | short | FALSE | 67.118 | 50.02 | 49.80 | 46.78 | 48.94 | 48.88 | 1.37 PyTorch | relu6 | relu6_dims(512 512)_contigFalse_inplaceFalse_dtypetorch.quint8 | short | FALSE | 68.739 | 51.17 | 51.19 | 48.07 | 50.42 | 50.21 | 1.37 PyTorch | relu6 | relu6_dims(256 1024)_contigFalse_inplaceFalse_dtypetorch.quint8 | short | FALSE | 69.1875 | 51.97 | 52.77 | 50.00 | 51.24 | 51.50 | 1.34 PyTorch | functional.hardtanh | functional.hardtanh_dims(256 1024)_contigFalse_inplaceFalse_dtypetorch.quint8 | short | FALSE | 67.436 | 50.98 | 51.69 | 49.06 | 49.87 | 50.40 | 1.34 @chuanqi129 @huydhn @desertfire @jainapurva Pull Request resolved: pytorch#162693 Approved by: https://github.com/huydhn
@pytorchbot cherry-pick --onto release/2.9 --c critical |
According to the results of the last four operator benchmark runs, we found that five models achieved more than a 30% improvement compared to the baseline. Therefore, we will update the operator benchmark baseline data. We use the average results from the four runs as the new baseline for the five models. And add a pull request trigger for the operator benchmark workflow Benchmarking Framework | Benchmarking Module Name | Case Name | tag | run_backward | baseline old | r1 | r2 | r3 | r4 | avg | speedup -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- PyTorch | add | add_M1_N1_K1_cpu | short | FALSE | 3.9497 | 2.57 | 2.54 | 2.38 | 2.31 | 2.45 | 1.61 PyTorch | functional.hardtanh | functional.hardtanh_dims(512 512)_contigFalse_inplaceFalse_dtypetorch.quint8 | short | FALSE | 67.118 | 50.02 | 49.80 | 46.78 | 48.94 | 48.88 | 1.37 PyTorch | relu6 | relu6_dims(512 512)_contigFalse_inplaceFalse_dtypetorch.quint8 | short | FALSE | 68.739 | 51.17 | 51.19 | 48.07 | 50.42 | 50.21 | 1.37 PyTorch | relu6 | relu6_dims(256 1024)_contigFalse_inplaceFalse_dtypetorch.quint8 | short | FALSE | 69.1875 | 51.97 | 52.77 | 50.00 | 51.24 | 51.50 | 1.34 PyTorch | functional.hardtanh | functional.hardtanh_dims(256 1024)_contigFalse_inplaceFalse_dtypetorch.quint8 | short | FALSE | 67.436 | 50.98 | 51.69 | 49.06 | 49.87 | 50.40 | 1.34 @chuanqi129 @huydhn @desertfire @jainapurva Pull Request resolved: #162693 Approved by: https://github.com/huydhn (cherry picked from commit f7ea497)
Cherry picking #162693The cherry pick PR is at #164789 and it is recommended to link a critical cherry pick PR with an issue. The following tracker issues are updated: Details for Dev Infra teamRaised by workflow job |
update the baseline data for the operator benchmark (#162693) According to the results of the last four operator benchmark runs, we found that five models achieved more than a 30% improvement compared to the baseline. Therefore, we will update the operator benchmark baseline data. We use the average results from the four runs as the new baseline for the five models. And add a pull request trigger for the operator benchmark workflow Benchmarking Framework | Benchmarking Module Name | Case Name | tag | run_backward | baseline old | r1 | r2 | r3 | r4 | avg | speedup -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- PyTorch | add | add_M1_N1_K1_cpu | short | FALSE | 3.9497 | 2.57 | 2.54 | 2.38 | 2.31 | 2.45 | 1.61 PyTorch | functional.hardtanh | functional.hardtanh_dims(512 512)_contigFalse_inplaceFalse_dtypetorch.quint8 | short | FALSE | 67.118 | 50.02 | 49.80 | 46.78 | 48.94 | 48.88 | 1.37 PyTorch | relu6 | relu6_dims(512 512)_contigFalse_inplaceFalse_dtypetorch.quint8 | short | FALSE | 68.739 | 51.17 | 51.19 | 48.07 | 50.42 | 50.21 | 1.37 PyTorch | relu6 | relu6_dims(256 1024)_contigFalse_inplaceFalse_dtypetorch.quint8 | short | FALSE | 69.1875 | 51.97 | 52.77 | 50.00 | 51.24 | 51.50 | 1.34 PyTorch | functional.hardtanh | functional.hardtanh_dims(256 1024)_contigFalse_inplaceFalse_dtypetorch.quint8 | short | FALSE | 67.436 | 50.98 | 51.69 | 49.06 | 49.87 | 50.40 | 1.34 @chuanqi129 @huydhn @desertfire @jainapurva Pull Request resolved: #162693 Approved by: https://github.com/huydhn (cherry picked from commit f7ea497) Co-authored-by: LifengWang <lifeng.a.wang@intel.com>
According to the results of the last four operator benchmark runs, we found that five models achieved more than a 30% improvement compared to the baseline. Therefore, we will update the operator benchmark baseline data.
We use the average results from the four runs as the new baseline for the five models.
And add a pull request trigger for the operator benchmark workflow
@chuanqi129 @huydhn @desertfire @jainapurva