-
Notifications
You must be signed in to change notification settings - Fork 7.2k
Closed
Description
🐛 Bug
This seems to be a recurrence of an issue spotted in #1938 which was fixed back in March 2020 and then closed, but has now reappeared. There are a number of people in #1938 reporting that the issue appeared somewhere in the last 12 hours.
To Reproduce
Steps to reproduce the behavior:
- Open a fresh google colab
- Try something like the following:
import torchvision
from torchvision import datasets, transforms
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,)),
])
trainset = datasets.MNIST('PATH_TO_STORE_TRAINSET', download=True, train=True, transform=transform)
Results in:
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to PATH_TO_STORE_TRAINSET/MNIST/raw/train-images-idx3-ubyte.gz
0/? [00:00<?, ?it/s]
---------------------------------------------------------------------------
HTTPError Traceback (most recent call last)
<ipython-input-16-492e382ce34e> in <module>()
4 transforms.Normalize((0.5,), (0.5,)),
5 ])
----> 6 trainset = datasets.MNIST('PATH_TO_STORE_TRAINSET', download=True, train=True, transform=transform)
11 frames
/usr/local/lib/python3.7/dist-packages/torchvision/datasets/mnist.py in __init__(self, root, train, transform, target_transform, download)
77
78 if download:
---> 79 self.download()
80
81 if not self._check_exists():
/usr/local/lib/python3.7/dist-packages/torchvision/datasets/mnist.py in download(self)
144 for url, md5 in self.resources:
145 filename = url.rpartition('/')[2]
--> 146 download_and_extract_archive(url, download_root=self.raw_folder, filename=filename, md5=md5)
147
148 # process and save as torch files
/usr/local/lib/python3.7/dist-packages/torchvision/datasets/utils.py in download_and_extract_archive(url, download_root, extract_root, filename, md5, remove_finished)
254 filename = os.path.basename(url)
255
--> 256 download_url(url, download_root, filename, md5)
257
258 archive = os.path.join(download_root, filename)
/usr/local/lib/python3.7/dist-packages/torchvision/datasets/utils.py in download_url(url, root, filename, md5)
82 )
83 else:
---> 84 raise e
85 # check integrity of downloaded file
86 if not check_integrity(fpath, md5):
/usr/local/lib/python3.7/dist-packages/torchvision/datasets/utils.py in download_url(url, root, filename, md5)
70 urllib.request.urlretrieve(
71 url, fpath,
---> 72 reporthook=gen_bar_updater()
73 )
74 except (urllib.error.URLError, IOError) as e: # type: ignore[attr-defined]
/usr/lib/python3.7/urllib/request.py in urlretrieve(url, filename, reporthook, data)
245 url_type, path = splittype(url)
246
--> 247 with contextlib.closing(urlopen(url, data)) as fp:
248 headers = fp.info()
249
/usr/lib/python3.7/urllib/request.py in urlopen(url, data, timeout, cafile, capath, cadefault, context)
220 else:
221 opener = _opener
--> 222 return opener.open(url, data, timeout)
223
224 def install_opener(opener):
/usr/lib/python3.7/urllib/request.py in open(self, fullurl, data, timeout)
529 for processor in self.process_response.get(protocol, []):
530 meth = getattr(processor, meth_name)
--> 531 response = meth(req, response)
532
533 return response
/usr/lib/python3.7/urllib/request.py in http_response(self, request, response)
639 if not (200 <= code < 300):
640 response = self.parent.error(
--> 641 'http', request, response, code, msg, hdrs)
642
643 return response
/usr/lib/python3.7/urllib/request.py in error(self, proto, *args)
567 if http_err:
568 args = (dict, 'default', 'http_error_default') + orig_args
--> 569 return self._call_chain(*args)
570
571 # XXX probably also want an abstract factory that knows when it makes
/usr/lib/python3.7/urllib/request.py in _call_chain(self, chain, kind, meth_name, *args)
501 for handler in handlers:
502 func = getattr(handler, meth_name)
--> 503 result = func(*args)
504 if result is not None:
505 return result
/usr/lib/python3.7/urllib/request.py in http_error_default(self, req, fp, code, msg, hdrs)
647 class HTTPDefaultErrorHandler(BaseHandler):
648 def http_error_default(self, req, fp, code, msg, hdrs):
--> 649 raise HTTPError(req.full_url, code, msg, hdrs, fp)
650
651 class HTTPRedirectHandler(BaseHandler):
HTTPError: HTTP Error 403: Forbidden
Expected behavior
The dataset should just be loaded (as indeed it was this morning).
Environment
Collecting environment information...
PyTorch version: 1.7.1+cu101
Is debug build: False
CUDA used to build PyTorch: 10.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 18.04.5 LTS (x86_64)
GCC version: (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
Clang version: 6.0.0-1ubuntu2 (tags/RELEASE_600/final)
CMake version: version 3.12.0
Python version: 3.7 (64-bit runtime)
Is CUDA available: False
CUDA runtime version: 11.0.221
GPU models and configuration: Could not collect
Nvidia driver version: Could not collect
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.7.6.5
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.0.4
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.0.4
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.0.4
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.0.4
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.0.4
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.0.4
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.0.4
HIP runtime version: N/A
MIOpen runtime version: N/A
Versions of relevant libraries:
[pip3] numpy==1.19.5
[pip3] torch==1.7.1+cu101
[pip3] torchsummary==1.5.1
[pip3] torchtext==0.3.1
[pip3] torchvision==0.8.2+cu101
[conda] Could not collect```
cc @pmeier
sunyunlee, richardliaw, ForeverAT, kaushikb11 and Innixmaedenlightning