Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
35 changes: 35 additions & 0 deletions references/video_classification/sampler.py
Original file line number Diff line number Diff line change
Expand Up @@ -87,3 +87,38 @@ def __iter__(self):

def __len__(self):
return sum(min(len(c), self.max_clips_per_video) for c in self.video_clips.clips)


class RandomClipSampler(torch.utils.data.Sampler):
"""
Samples at most `max_video_clips_per_video` clips for each video randomly

Arguments:
video_clips (VideoClips): video clips to sample from
max_clips_per_video (int): maximum number of clips to be sampled per video
"""
def __init__(self, video_clips, max_clips_per_video):
if not isinstance(video_clips, torchvision.datasets.video_utils.VideoClips):
raise TypeError("Expected video_clips to be an instance of VideoClips, "
"got {}".format(type(video_clips)))
self.video_clips = video_clips
self.max_clips_per_video = max_clips_per_video

def __iter__(self):
idxs = []
s = 0
# select at most max_clips_per_video for each video, randomly
for c in self.video_clips.clips:
length = len(c)
size = min(length, self.max_clips_per_video)
sampled = torch.randperm(length)[:size] + s
s += length
idxs.append(sampled)
idxs = torch.cat(idxs)
# shuffle all clips randomly
perm = torch.randperm(len(idxs))
idxs = idxs[perm].tolist()
return iter(idxs)

def __len__(self):
return sum(min(len(c), self.max_clips_per_video) for c in self.video_clips.clips)
4 changes: 2 additions & 2 deletions references/video_classification/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@
from torchvision import transforms

import utils
from sampler import DistributedSampler, UniformClipSampler
from sampler import DistributedSampler, UniformClipSampler, RandomClipSampler
from scheduler import WarmupMultiStepLR
import transforms as T

Expand Down Expand Up @@ -184,7 +184,7 @@ def main(args):
dataset_test.video_clips.compute_clips(args.clip_len, 1, frame_rate=15)

print("Creating data loaders")
train_sampler = torchvision.datasets.video_utils.RandomClipSampler(dataset.video_clips, args.clips_per_video)
train_sampler = RandomClipSampler(dataset.video_clips, args.clips_per_video)
test_sampler = UniformClipSampler(dataset_test.video_clips, args.clips_per_video)
if args.distributed:
train_sampler = DistributedSampler(train_sampler)
Expand Down
8 changes: 5 additions & 3 deletions test/test_datasets_video_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
import unittest

from torchvision import io
from torchvision.datasets.video_utils import VideoClips, unfold, RandomClipSampler
from torchvision.datasets.video_utils import VideoClips, unfold

from common_utils import get_tmp_dir

Expand Down Expand Up @@ -80,21 +80,23 @@ def test_video_clips(self):
self.assertEqual(video_idx, v_idx)
self.assertEqual(clip_idx, c_idx)

@unittest.skip("Moved to reference scripts for now")
def test_video_sampler(self):
with get_list_of_videos(num_videos=3, sizes=[25, 25, 25]) as video_list:
video_clips = VideoClips(video_list, 5, 5)
sampler = RandomClipSampler(video_clips, 3)
sampler = RandomClipSampler(video_clips, 3) # noqa: F821
self.assertEqual(len(sampler), 3 * 3)
indices = torch.tensor(list(iter(sampler)))
videos = indices // 5
v_idxs, count = torch.unique(videos, return_counts=True)
self.assertTrue(v_idxs.equal(torch.tensor([0, 1, 2])))
self.assertTrue(count.equal(torch.tensor([3, 3, 3])))

@unittest.skip("Moved to reference scripts for now")
def test_video_sampler_unequal(self):
with get_list_of_videos(num_videos=3, sizes=[10, 25, 25]) as video_list:
video_clips = VideoClips(video_list, 5, 5)
sampler = RandomClipSampler(video_clips, 3)
sampler = RandomClipSampler(video_clips, 3) # noqa: F821
self.assertEqual(len(sampler), 2 + 3 + 3)
indices = list(iter(sampler))
self.assertIn(0, indices)
Expand Down
36 changes: 0 additions & 36 deletions torchvision/datasets/video_utils.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
import bisect
import math
import torch
import torch.utils.data
from torchvision.io import read_video_timestamps, read_video

from .utils import tqdm
Expand Down Expand Up @@ -214,38 +213,3 @@ def get_clip(self, idx):
info["video_fps"] = self.frame_rate
assert len(video) == self.num_frames, "{} x {}".format(video.shape, self.num_frames)
return video, audio, info, video_idx


class RandomClipSampler(torch.utils.data.Sampler):
"""
Samples at most `max_video_clips_per_video` clips for each video randomly

Arguments:
video_clips (VideoClips): video clips to sample from
max_clips_per_video (int): maximum number of clips to be sampled per video
"""
def __init__(self, video_clips, max_clips_per_video):
if not isinstance(video_clips, VideoClips):
raise TypeError("Expected video_clips to be an instance of VideoClips, "
"got {}".format(type(video_clips)))
self.video_clips = video_clips
self.max_clips_per_video = max_clips_per_video

def __iter__(self):
idxs = []
s = 0
# select at most max_clips_per_video for each video, randomly
for c in self.video_clips.clips:
length = len(c)
size = min(length, self.max_clips_per_video)
sampled = torch.randperm(length)[:size] + s
s += length
idxs.append(sampled)
idxs = torch.cat(idxs)
# shuffle all clips randomly
perm = torch.randperm(len(idxs))
idxs = idxs[perm].tolist()
return iter(idxs)

def __len__(self):
return sum(min(len(c), self.max_clips_per_video) for c in self.video_clips.clips)