Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 16 additions & 1 deletion test/test_functional_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,20 +12,25 @@ class Tester(unittest.TestCase):

def test_vflip(self):
img_tensor = torch.randn(3, 16, 16)
img_tensor_clone = img_tensor.clone()
vflipped_img = F_t.vflip(img_tensor)
vflipped_img_again = F_t.vflip(vflipped_img)
self.assertEqual(vflipped_img.shape, img_tensor.shape)
self.assertTrue(torch.equal(img_tensor, vflipped_img_again))
self.assertTrue(torch.equal(img_tensor, img_tensor_clone))

def test_hflip(self):
img_tensor = torch.randn(3, 16, 16)
img_tensor_clone = img_tensor.clone()
hflipped_img = F_t.hflip(img_tensor)
hflipped_img_again = F_t.hflip(hflipped_img)
self.assertEqual(hflipped_img.shape, img_tensor.shape)
self.assertTrue(torch.equal(img_tensor, hflipped_img_again))
self.assertTrue(torch.equal(img_tensor, img_tensor_clone))

def test_crop(self):
img_tensor = torch.randint(0, 255, (3, 16, 16), dtype=torch.uint8)
img_tensor_clone = img_tensor.clone()
top = random.randint(0, 15)
left = random.randint(0, 15)
height = random.randint(1, 16 - top)
Expand All @@ -34,7 +39,7 @@ def test_crop(self):
img_PIL = transforms.ToPILImage()(img_tensor)
img_PIL_cropped = F.crop(img_PIL, top, left, height, width)
img_cropped_GT = transforms.ToTensor()(img_PIL_cropped)

self.assertTrue(torch.equal(img_tensor, img_tensor_clone))
self.assertTrue(torch.equal(img_cropped, (img_cropped_GT * 255).to(torch.uint8)),
"functional_tensor crop not working")

Expand All @@ -54,6 +59,7 @@ def test_adjustments(self):
img = torch.randint(0, 256, shape, dtype=torch.uint8)

factor = 3 * torch.rand(1)
img_clone = img.clone()
for f, ft in fns:

ft_img = ft(img, factor)
Expand All @@ -68,23 +74,29 @@ def test_adjustments(self):
# difference in values caused by (at most 5) truncations.
max_diff = (ft_img - f_img).abs().max()
self.assertLess(max_diff, 5 / 255 + 1e-5)
self.assertTrue(torch.equal(img, img_clone))

def test_rgb_to_grayscale(self):
img_tensor = torch.randint(0, 255, (3, 16, 16), dtype=torch.uint8)
img_tensor_clone = img_tensor.clone()
grayscale_tensor = F_t.rgb_to_grayscale(img_tensor).to(int)
grayscale_pil_img = torch.tensor(np.array(F.to_grayscale(F.to_pil_image(img_tensor)))).to(int)
max_diff = (grayscale_tensor - grayscale_pil_img).abs().max()
self.assertLess(max_diff, 1.0001)
self.assertTrue(torch.equal(img_tensor, img_tensor_clone))

def test_center_crop(self):
img_tensor = torch.randint(0, 255, (1, 32, 32), dtype=torch.uint8)
img_tensor_clone = img_tensor.clone()
cropped_tensor = F_t.center_crop(img_tensor, [10, 10])
cropped_pil_image = F.center_crop(transforms.ToPILImage()(img_tensor), [10, 10])
cropped_pil_tensor = (transforms.ToTensor()(cropped_pil_image) * 255).to(torch.uint8)
self.assertTrue(torch.equal(cropped_tensor, cropped_pil_tensor))
self.assertTrue(torch.equal(img_tensor, img_tensor_clone))

def test_five_crop(self):
img_tensor = torch.randint(0, 255, (1, 32, 32), dtype=torch.uint8)
img_tensor_clone = img_tensor.clone()
cropped_tensor = F_t.five_crop(img_tensor, [10, 10])
cropped_pil_image = F.five_crop(transforms.ToPILImage()(img_tensor), [10, 10])
self.assertTrue(torch.equal(cropped_tensor[0],
Expand All @@ -97,9 +109,11 @@ def test_five_crop(self):
(transforms.ToTensor()(cropped_pil_image[3]) * 255).to(torch.uint8)))
self.assertTrue(torch.equal(cropped_tensor[4],
(transforms.ToTensor()(cropped_pil_image[4]) * 255).to(torch.uint8)))
self.assertTrue(torch.equal(img_tensor, img_tensor_clone))

def test_ten_crop(self):
img_tensor = torch.randint(0, 255, (1, 32, 32), dtype=torch.uint8)
img_tensor_clone = img_tensor.clone()
cropped_tensor = F_t.ten_crop(img_tensor, [10, 10])
cropped_pil_image = F.ten_crop(transforms.ToPILImage()(img_tensor), [10, 10])
self.assertTrue(torch.equal(cropped_tensor[0],
Expand All @@ -122,6 +136,7 @@ def test_ten_crop(self):
(transforms.ToTensor()(cropped_pil_image[8]) * 255).to(torch.uint8)))
self.assertTrue(torch.equal(cropped_tensor[9],
(transforms.ToTensor()(cropped_pil_image[9]) * 255).to(torch.uint8)))
self.assertTrue(torch.equal(img_tensor, img_tensor_clone))


if __name__ == '__main__':
Expand Down