Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
95 changes: 53 additions & 42 deletions test/test_transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -215,53 +215,64 @@ def test_randomperspective_fill(self):
F.perspective(img_conv, startpoints, endpoints, fill=tuple([fill] * wrong_num_bands))

def test_resize(self):
height = random.randint(24, 32) * 2
width = random.randint(24, 32) * 2
osize = random.randint(5, 12) * 2

# TODO: Check output size check for bug-fix, improve this later
t = transforms.Resize(osize)
self.assertTrue(isinstance(t.size, int))
self.assertEqual(t.size, osize)
input_sizes = [
# height, width
# square image
(28, 28),
(27, 27),
# rectangular image: h < w
(28, 34),
(29, 35),
# rectangular image: h > w
(34, 28),
(35, 29),
]
test_output_sizes_1 = [
# single integer
22, 27, 28, 36,
# single integer in tuple/list
[22, ], (27, ),
]
test_output_sizes_2 = [
# two integers
[22, 22], [22, 28], [22, 36],
[27, 22], [36, 22], [28, 28],
[28, 37], [37, 27], [37, 37]
]

for height, width in input_sizes:
img = Image.new("RGB", size=(width, height), color=127)

for osize in test_output_sizes_1:

t = transforms.Resize(osize)
result = t(img)

msg = "{}, {} - {}".format(height, width, osize)
osize = osize[0] if isinstance(osize, (list, tuple)) else osize
# If size is an int, smaller edge of the image will be matched to this number.
# i.e, if height > width, then image will be rescaled to (size * height / width, size).
if height < width:
expected_size = (int(osize * width / height), osize) # (w, h)
self.assertEqual(result.size, expected_size, msg=msg)
elif width < height:
expected_size = (osize, int(osize * height / width)) # (w, h)
self.assertEqual(result.size, expected_size, msg=msg)
else:
expected_size = (osize, osize) # (w, h)
self.assertEqual(result.size, expected_size, msg=msg)

img = torch.ones(3, height, width)
result = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize(osize),
transforms.ToTensor(),
])(img)
self.assertIn(osize, result.size())
if height < width:
self.assertLessEqual(result.size(1), result.size(2))
elif width < height:
self.assertGreaterEqual(result.size(1), result.size(2))
for height, width in input_sizes:
img = Image.new("RGB", size=(width, height), color=127)

result = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize([osize, osize]),
transforms.ToTensor(),
])(img)
self.assertIn(osize, result.size())
self.assertEqual(result.size(1), osize)
self.assertEqual(result.size(2), osize)
for osize in test_output_sizes_2:
oheight, owidth = osize

oheight = random.randint(5, 12) * 2
owidth = random.randint(5, 12) * 2
result = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((oheight, owidth)),
transforms.ToTensor(),
])(img)
self.assertEqual(result.size(1), oheight)
self.assertEqual(result.size(2), owidth)
t = transforms.Resize(osize)
result = t(img)

result = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize([oheight, owidth]),
transforms.ToTensor(),
])(img)
self.assertEqual(result.size(1), oheight)
self.assertEqual(result.size(2), owidth)
self.assertEqual((owidth, oheight), result.size)

def test_random_crop(self):
height = random.randint(10, 32) * 2
Expand Down