Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions test/test_transforms_v2.py
Original file line number Diff line number Diff line change
Expand Up @@ -1876,7 +1876,7 @@ def test_detection_preset(image_type, data_augmentation, to_tensor, sanitize):
elif data_augmentation == "ssd":
t = [
transforms.RandomPhotometricDistort(p=1),
transforms.RandomZoomOut(fill=defaultdict(lambda: (123.0, 117.0, 104.0), {datapoints.Mask: 0})),
transforms.RandomZoomOut(fill=defaultdict(lambda: (123.0, 117.0, 104.0), {datapoints.Mask: 0}), p=1),
transforms.RandomIoUCrop(),
transforms.RandomHorizontalFlip(p=1),
to_tensor,
Expand Down Expand Up @@ -1935,7 +1935,7 @@ def test_detection_preset(image_type, data_augmentation, to_tensor, sanitize):
# param is True.
# Note that the values below are probably specific to the random seed
# set above (which is fine).
(True, "ssd"): 4,
(True, "ssd"): 5,
(True, "ssdlite"): 4,
}.get((sanitize, data_augmentation), num_boxes)

Expand Down
49 changes: 22 additions & 27 deletions torchvision/transforms/v2/_color.py
Original file line number Diff line number Diff line change
Expand Up @@ -228,19 +228,22 @@ def __init__(

def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
num_channels, *_ = query_chw(flat_inputs)
return dict(
zip(
["brightness", "contrast1", "saturation", "hue", "contrast2"],
(torch.rand(5) < self.p).tolist(),
),
contrast_before=bool(torch.rand(()) < 0.5),
channel_permutation=torch.randperm(num_channels) if torch.rand(()) < self.p else None,
)
params: Dict[str, Any] = {
key: ColorJitter._generate_value(range[0], range[1]) if torch.rand(1) < self.p else None
for key, range in [
("brightness_factor", self.brightness),
("contrast_factor", self.contrast),
("saturation_factor", self.saturation),
("hue_factor", self.hue),
]
}
params["contrast_before"] = bool(torch.rand(()) < 0.5)
params["channel_permutation"] = torch.randperm(num_channels) if torch.rand(1) < self.p else None
return params

def _permute_channels(
self, inpt: Union[datapoints._ImageType, datapoints._VideoType], permutation: torch.Tensor
) -> Union[datapoints._ImageType, datapoints._VideoType]:

orig_inpt = inpt
if isinstance(orig_inpt, PIL.Image.Image):
inpt = F.pil_to_tensor(inpt)
Expand All @@ -256,24 +259,16 @@ def _permute_channels(
def _transform(
self, inpt: Union[datapoints._ImageType, datapoints._VideoType], params: Dict[str, Any]
) -> Union[datapoints._ImageType, datapoints._VideoType]:
if params["brightness"]:
inpt = F.adjust_brightness(
inpt, brightness_factor=ColorJitter._generate_value(self.brightness[0], self.brightness[1])
)
if params["contrast1"] and params["contrast_before"]:
inpt = F.adjust_contrast(
inpt, contrast_factor=ColorJitter._generate_value(self.contrast[0], self.contrast[1])
)
if params["saturation"]:
inpt = F.adjust_saturation(
inpt, saturation_factor=ColorJitter._generate_value(self.saturation[0], self.saturation[1])
)
if params["hue"]:
inpt = F.adjust_hue(inpt, hue_factor=ColorJitter._generate_value(self.hue[0], self.hue[1]))
if params["contrast2"] and not params["contrast_before"]:
inpt = F.adjust_contrast(
inpt, contrast_factor=ColorJitter._generate_value(self.contrast[0], self.contrast[1])
)
if params["brightness_factor"] is not None:
inpt = F.adjust_brightness(inpt, brightness_factor=params["brightness_factor"])
if params["contrast_factor"] is not None and params["contrast_before"]:
inpt = F.adjust_contrast(inpt, contrast_factor=params["contrast_factor"])
if params["saturation_factor"] is not None:
inpt = F.adjust_saturation(inpt, saturation_factor=params["saturation_factor"])
if params["hue_factor"] is not None:
inpt = F.adjust_hue(inpt, hue_factor=params["hue_factor"])
if params["contrast_factor"] is not None and not params["contrast_before"]:
inpt = F.adjust_contrast(inpt, contrast_factor=params["contrast_factor"])
if params["channel_permutation"] is not None:
inpt = self._permute_channels(inpt, permutation=params["channel_permutation"])
return inpt
Expand Down