Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 35 additions & 1 deletion torchvision/models/detection/faster_rcnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -99,7 +99,41 @@ class FasterRCNN(GeneralizedRCNN):

Example::

>>> model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
>>> import torchvision
>>> from torchvision.models.detection import FasterRCNN
>>> from torchvision.models.detection.rpn import AnchorGenerator
>>> # load a pre-trained model for classification and return
>>> # only the features
>>> backbone = torchvision.models.mobilenet_v2(pretrained=True).features
>>> # FasterRCNN needs to know the number of
>>> # output channels in a backbone. For mobilenet_v2, it's 1280
>>> # so we need to add it here
>>> backbone.out_channels = 1280
>>>
>>> # let's make the RPN generate 5 x 3 anchors per spatial
>>> # location, with 5 different sizes and 3 different aspect
>>> # ratios. We have a Tuple[Tuple[int]] because each feature
>>> # map could potentially have different sizes and
>>> # aspect ratios
>>> anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),),
>>> aspect_ratios=((0.5, 1.0, 2.0),))
>>>
>>> # let's define what are the feature maps that we will
>>> # use to perform the region of interest cropping, as well as
>>> # the size of the crop after rescaling.
>>> # if your backbone returns a Tensor, featmap_names is expected to
>>> # be [0]. More generally, the backbone should return an
>>> # OrderedDict[Tensor], and in featmap_names you can choose which
>>> # feature maps to use.
>>> roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=[0],
>>> output_size=7,
>>> sampling_ratio=2)
>>>
>>> # put the pieces together inside a FasterRCNN model
>>> model = FasterRCNN(backbone,
>>> num_classes=2,
>>> rpn_anchor_generator=anchor_generator,
>>> box_roi_pool=roi_pooler)
>>> model.eval()
>>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
>>> predictions = model(x)
Expand Down
42 changes: 41 additions & 1 deletion torchvision/models/detection/keypoint_rcnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,47 @@ class KeypointRCNN(FasterRCNN):

Example::

>>> model = torchvision.models.detection.keypointrcnn_resnet50_fpn(pretrained=True)
>>> import torchvision
>>> from torchvision.models.detection import KeypointRCNN
>>> from torchvision.models.detection.rpn import AnchorGenerator
>>>
>>> # load a pre-trained model for classification and return
>>> # only the features
>>> backbone = torchvision.models.mobilenet_v2(pretrained=True).features
>>> # KeypointRCNN needs to know the number of
>>> # output channels in a backbone. For mobilenet_v2, it's 1280
>>> # so we need to add it here
>>> backbone.out_channels = 1280
>>>
>>> # let's make the RPN generate 5 x 3 anchors per spatial
>>> # location, with 5 different sizes and 3 different aspect
>>> # ratios. We have a Tuple[Tuple[int]] because each feature
>>> # map could potentially have different sizes and
>>> # aspect ratios
>>> anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),),
>>> aspect_ratios=((0.5, 1.0, 2.0),))
>>>
>>> # let's define what are the feature maps that we will
>>> # use to perform the region of interest cropping, as well as
>>> # the size of the crop after rescaling.
>>> # if your backbone returns a Tensor, featmap_names is expected to
>>> # be [0]. More generally, the backbone should return an
>>> # OrderedDict[Tensor], and in featmap_names you can choose which
>>> # feature maps to use.
>>> roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=[0],
>>> output_size=7,
>>> sampling_ratio=2)
>>>
>>> keypoint_roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=[0],
>>> output_size=14,
>>> sampling_ratio=2)
>>> # put the pieces together inside a FasterRCNN model
>>> model = KeypointRCNN(backbone,
>>> num_classes=2,
>>> rpn_anchor_generator=anchor_generator,
>>> box_roi_pool=roi_pooler,
>>> keypoint_roi_pool=keypoint_roi_pooler)
>>> model.eval()
>>> model.eval()
>>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
>>> predictions = model(x)
Expand Down
47 changes: 44 additions & 3 deletions torchvision/models/detection/mask_rcnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,7 +104,46 @@ class MaskRCNN(FasterRCNN):

Example::

>>> model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True)
>>> import torchvision
>>> from torchvision.models.detection import MaskRCNN
>>> from torchvision.models.detection.rpn import AnchorGenerator
>>>
>>> # load a pre-trained model for classification and return
>>> # only the features
>>> backbone = torchvision.models.mobilenet_v2(pretrained=True).features
>>> # MaskRCNN needs to know the number of
>>> # output channels in a backbone. For mobilenet_v2, it's 1280
>>> # so we need to add it here
>>> backbone.out_channels = 1280
>>>
>>> # let's make the RPN generate 5 x 3 anchors per spatial
>>> # location, with 5 different sizes and 3 different aspect
>>> # ratios. We have a Tuple[Tuple[int]] because each feature
>>> # map could potentially have different sizes and
>>> # aspect ratios
>>> anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),),
>>> aspect_ratios=((0.5, 1.0, 2.0),))
>>>
>>> # let's define what are the feature maps that we will
>>> # use to perform the region of interest cropping, as well as
>>> # the size of the crop after rescaling.
>>> # if your backbone returns a Tensor, featmap_names is expected to
>>> # be [0]. More generally, the backbone should return an
>>> # OrderedDict[Tensor], and in featmap_names you can choose which
>>> # feature maps to use.
>>> roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=[0],
>>> output_size=7,
>>> sampling_ratio=2)
>>>
>>> mask_roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=[0],
>>> output_size=14,
>>> sampling_ratio=2)
>>> # put the pieces together inside a FasterRCNN model
>>> model = MaskRCNN(backbone,
>>> num_classes=2,
>>> rpn_anchor_generator=anchor_generator,
>>> box_roi_pool=roi_pooler,
>>> mask_roi_pool=mask_roi_pooler)
>>> model.eval()
>>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
>>> predictions = model(x)
Expand Down Expand Up @@ -149,8 +188,10 @@ def __init__(self, backbone, num_classes=None,
mask_head = MaskRCNNHeads(out_channels, mask_layers, mask_dilation)

if mask_predictor is None:
mask_dim_reduced = 256 # == mask_layers[-1]
mask_predictor = MaskRCNNPredictor(out_channels, mask_dim_reduced, num_classes)
mask_predictor_in_channels = 256 # == mask_layers[-1]
mask_dim_reduced = 256
mask_predictor = MaskRCNNPredictor(mask_predictor_in_channels,
mask_dim_reduced, num_classes)

super(MaskRCNN, self).__init__(
backbone, num_classes,
Expand Down