This repo contains the PyTorch implementation for [Class-Balancing Diffusion Models], by Yiming Qin, Huangjie Zheng, Jiangchao Yao, Mingyuan Zhou, and Ya Zhang.
Diffusion-based models have shown the merits of generating high-quality visual data while preserving better diversity in recent studies. However, such observation is only justified with curated data distribution, where the data samples are nicely pre-processed to be uniformly distributed in terms of their labels. In practice, a long-tailed data distribution appears more common and how diffusion models perform on such class-imbalanced data remains unknown. In this work, we first investigate this problem and observe significant degradation in both diversity and fidelity when the diffusion model is trained on datasets with class-imbalanced distributions. Especially in tail classes, the generations largely lose diversity and we observe severe mode-collapse issues. To tackle this problem, we set from the hypothesis that the data distribution is not class-balanced, and propose Class-Balancing Diffusion Models (CBDM) that are trained with a distribution adjustment regularizer as a solution. Experiments show that images generated by CBDM exhibit higher diversity and quality in both quantitative and qualitative ways. Our method benchmarked the generation results on CIFAR100/CIFAR100LT dataset and shows outstanding performance on the downstream recognition task.
The repo is implemented based on https://github.com/w86763777/pytorch-ddpm. Currently it supports the training for four datasets namely CIFAR10(LT) and CIFAR100(LT) under following three mechanisms:
- Regular (conditional or unconditional) diffusion model training
- Class-balancing model training
- Class-balancing model finetuning based on a regular diffusion model
We provide mainly the scripts for trianing and evaluating the CIFAR100LT dataset. To run the code, please change the argument 'root' to the path where the dataset is downloaded.
Please find the features for cifar 100 and cifar 10 used in precision/recall/f_beta metrics. Put them in the stats folder and the codes will be ready to run. Note that those two metrics will only be evaluated if the number of samples is 50k otherwise it returns 0.
-
Regular conditional diffusion model training, supporting the classifier-free guidance (cfg) sampling
python main.py --train \ --flagfile ./config/cifar100.txt --parallel \ --logdir ./logs/cifar100lt_ddpm --total_steps 300001 \ --conditional \ --data_type cifar100lt --imb_factor 0.01 --img_size 32 \ --batch_size 64 --save_step 100000 --sample_step 50000 \ --cfg
-
Class-balancing model training without ADA augmentation
python main.py --train \ --flagfile ./config/cifar100.txt --parallel \ --logdir ./logs/cifar100lt_cbdm --total_steps 300001 \ --conditional \ --data_type cifar100lt --imb_factor 0.01 --img_size 32 \ --batch_size 48 --save_step 100000 --sample_step 50000 \ --cb --tau 1.0
-
Class-balancing model training with ADA augmentation
python main.py --train \ --flagfile ./config/cifar100.txt --parallel \ --logdir ./logs/cifar100lt_cbdm_augm --total_steps 500001 \ --conditional \ --data_type cifar100lt --imb_factor 0.01 --img_size 32 \ --batch_size 48 --save_step 100000 --sample_step 50000 \ --cb --tau 1.0 --augm
-
Class-balancing model finetuning: finetune a DDPM model(ckpt of 200000 steps which the classifier-free guidance (cfg) sampling) based on CBDM approach
python main.py --train \ --flagfile ./config/cifar100.txt --parallel \ --logdir ./logs/cifar100lt_ddpm --total_steps 100001 \ --conditional \ --data_type cifar100lt --imb_factor 0.01 --img_size 32 \ --batch_size 48 --save_step 50000 --sample_step 50000 \ --cb --tau 1.0 \ --finetune --finetuned_logdir cifar100lt_cbdm_finetune --ckpt_step 200000
-
Sample images and evaluate for the 4 models above.
python main.py \ --flagfile ./logs/cifar100lt_ddpm/flagfile.txt \ --logdir ./logs/cifar100lt_ddpm \ --fid_cache ./stats/cifar100.train.npz \ --ckpt_step 200000 \ --num_images 50000 --batch_size 64 \ --notrain \ --eval \ --sample_method cfg --omega 0.8
python main.py \ --flagfile ./logs/cifar100lt_cbdm/flagfile.txt \ --logdir ./logs/cifar100lt_cbdm \ --fid_cache ./stats/cifar100.train.npz \ --ckpt_step 300000 \ --num_images 50000 --batch_size 64 \ --notrain \ --eval \ --sample_method cfg --omega 1.6
python main.py \ --flagfile ./logs/cifar100lt_cbdm_augm/flagfile.txt \ --logdir ./logs/cifar100lt_cbdm_augm \ --fid_cache ./stats/cifar100.train.npz \ --ckpt_step 500000 \ --num_images 50000 --batch_size 192 \ --notrain \ --eval \ --sample_method cfg --omega 1.4
python main.py \ --flagfile ./logs/cifar100lt_cbdm_finetune/flagfile.txt \ --logdir ./logs/cifar100lt_cbdm_finetune \ --fid_cache ./stats/cifar100.train.npz \ --ckpt_step 250000 \ --num_images 50000 --batch_size 512 \ --notrain \ --eval \ --sample_method cfg --omega 2.0
If you find the code useful for your research, please consider citing
@inproceedings{qin2023class,
title={Class-balancing diffusion models},
author={Qin, Yiming and Zheng, Huangjie and Yao, Jiangchao and Zhou, Mingyuan and Zhang, Ya},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2023}
}
This implementation is based on / inspired by:
- https://github.com/w86763777/pytorch-ddpm
- https://github.com/crowsonkb/k-diffusion/blob/master/train.py (we refer to the implementation of ADA augmentation in K-diffusion model).