Skip to content

Conversation

rafarui
Copy link
Owner

@rafarui rafarui commented Mar 10, 2018

Co-authored-by: @marielenferreira

Checklist for the pandas documentation sprint (ignore this if you are doing
an unrelated PR):

  • PR title is "DOC: update the docstring"
  • The validation script passes: scripts/validate_docstrings.py <your-function-or-method>
  • The PEP8 style check passes: git diff upstream/master -u -- "*.py" | flake8 --diff
  • The html version looks good: python doc/make.py --single <your-function-or-method>
  • It has been proofread on language by another sprint participant

Please include the output of the validation script below between the "```" ticks:

################################################################################
############## Docstring (pandas.core.series.Series.sort_values)  ##############
################################################################################

Sort by the Series values.

Sort (or order) a Series in ascending or descending order by some
criterion.

Parameters
----------
axis : {0 or ‘index’}, default 0
    Axis to direct sorting. The value `index` is accepted for
    compatibility with DataFrame.sort_values.
ascending : bool, default True
    If  `True` sort values in ascending order, otherwise descending.
inplace : bool, default False
    If True, perform operation in-place.
kind : {‘quicksort’, ‘mergesort’ or ‘heapsort’}, default ‘quicksort’
    Choice of sorting algorithm. See also :func:`np.sort` for more
     information. `mergesort` is the only stable  algorithm.
na_position : {'first' or 'last'}, default 'last'
     Argument `first` puts NaNs at the beginning, `last` puts NaNs at
     the end.

Returns
-------
Series
    Series ordered by values.

See Also
--------
Series.sort_index : Sort by the Series indices.
DataFrame.sort_index : Sort DataFrame by indices.
DataFrame.sort_values : Sort by the values along either axis.

Examples
--------
>>> s = pd.Series([np.nan, 1, 3, 10, 5])
>>> s
0     NaN
1     1.0
2     3.0
3     10.0
4     5.0
dtype: float64

Sort values ascending order (default behaviour)

>>> s.sort_values(ascending=True)
1     1.0
2     3.0
4     5.0
3    10.0
0     NaN
dtype: float64

Sort values descending order

>>> s.sort_values(ascending=False)
3    10.0
4     5.0
2     3.0
1     1.0
0     NaN
dtype: float64

Sort values inplace

>>> s.sort_values(ascending=False, inplace=True)
>>> s
3    10.0
4     5.0
2     3.0
1     1.0
0     NaN
dtype: float64

Sort values putting NAs first

>>> s.sort_values(na_position='first')
0     NaN
1     1.0
2     3.0
4     5.0
3    10.0
dtype: float64

Sort a series of strings

>>> s = pd.Series(['z', 'b', 'd', 'a', 'c'])
>>> s
0    z
1    b
2    d
3    a
4    c
dtype: object

>>> s.sort_values()
3    a
1    b
4    c
2    d
0    z
dtype: object

################################################################################
################################## Validation ##################################
################################################################################

Docstring for "pandas.core.series.Series.sort_values" correct. :)

If the validation script still gives errors, but you think there is a good reason
to deviate in this case (and there are certainly such cases), please state this
explicitly.

@rafarui rafarui merged commit 973b741 into master Mar 10, 2018
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant