Skip to content

lucyLattes script para a extração e compilação de dados do currículo Lattes

License

Notifications You must be signed in to change notification settings

rafatieppo/lucylattes

Repository files navigation

lucyLattes

DOI

Última atualização

  • Versão v1.0.2
  • Wed 2024-08-14 20:56:51 -04 verifique os logs aqui.

Motivação

O CNPq por meio do currículo Lattes agrega dados do registro da vida profissional de estudantes, professores, e pesquisadores do país, e tornando-se padrão nacional no meio científico para consulta sobre a produção científica dos referidos profissionais.

Contudo, após a criação do captcha para o acesso aos currículos Lattes, extrair dados dos currículos se tornou uma tarefa árdua, pois todas vez que pretende-se acessar um currículo, torna-se necessário passar pelo captcha. Com o intuito de auxiliar na obtenção destes dados, o lucyLattes foi desenvolvido.

Com o intuito de melhorar a extração dos dados, e reduzir a possibilidade de erros de execução, a versão v1.0.0 foi desenvolvida. As principais mudanças estão na lógica de extração dos dados, organização dos arquivos e novos relatórios.

O que faz

Extração, compilação, e organização dos dados dos currículos da plataforma Lattes em arquivos de texto, e geração de um relátório simplificado, que proporcionam agilidade para a geração de informação.

Veja algumas informações geradas:

Publicações de periódicos por ano

Notas

O lucyLattes não tem vínculo com o CNPq. Este programa computacional é fruto de um esforço (independente) realizado com o objetivo de dar suporte às rotinas de análise de dados cadastradas nos Currículos Lattes (publicamente disponíveis).

Este programa é um software livre; você pode redistribui-lo e/ou modificá-lo dentro dos termos da Licença Pública Geral GNU. Verifique o arquivo LICENSE.txt .

Este programa é distribuído na esperança que possa ser útil, mas SEM NENHUMA GARANTIA; sem uma garantia implicita de ADEQUAÇÂO a qualquer MERCADO ou APLICAÇÃO EM PARTICULAR. Verifique o arquivo LICENSE.txt .

Como usar

Inicialmente recomenda-se a leitura dos próximos tópicos (Instalação e Como executar o programa).

Requerimentos:

  • Sistema operacional Linux ou com base Unix (preferencialmente), ou ainda Windows;
  • Python 3.8 ou superior;
  • Navegador (Firefox ou Chromium) para visualizar relatório.

Instalação no Linux

Python

  • Se não possuir Python3 ou superior instalado no DEBIAN, UBUNTU ou derivados:
sudo apt-get install python3
sudo apt-get install python3-pip
sudo apt-get install python3-tk

Ambiente virtual python (virtual environments) no Linux

Para saber mais sobre ambiente virtual em Python, clique aqui https://docs.python.org/3/library/venv.html. Também fiz um post resumido sobre o assunto AQUI.

  • De modo simplista:
  1. Crie uma pasta (diretório) e o ambiente virtual:
 mkdir teste_venv
 
 python3 -m venv ./teste_venv
  1. Para ativar o ambiente virtual:
rt@rt-av52a:~/.virtualenvs$ source ./teste_venv/bin/activate

(teste_venv) rafatieppo@rt-av52a:~/.virtualenvs$ 
  1. Para DEsativar o ambiente virtual:
(teste_venv) rafatieppo@rt-av52a:~/.virtualenvs$ deactivate
rafatieppo@rt-av52a:~/.virtualenvs$

Pacotes Python

Para todos os sistemas operacionais (Linux, MacOS, Windows, Solaris, etc) são necesssários as mesmas bibliotecas. Para instalar as bibliotecas em ambientes Linux acesse o Terminal, ative o seu ambiente Python e instale os pacotes.

Posteriormente, com o ambiente virtual ATIVADO, instale os pacotes necessários. No arquivo requirements_lucyLattes.txt está listado os pacotes necessários. Com o pip é possível executar o comando pip install -r requirements_lucyLattes,txt , e possivelmente os pacotes serão instalados. Ou ainda, vc pode instalar um pacote por vez.

(teste_venv) rt@rt-av52a:~/.virtualenvs$ pip3 install numpy
Collecting numpy
  Cache entry deserialization failed, entry ignored
  Downloading https://files.pythonhosted.org/packages/b8/46/40729c784/numpyx86_64.whl (14.1MB)
    100% |████████████████████████████████| 14.1MB 128kB/s 
Installing collected packages: numpy
Successfully installed numpy-1.21.1
(teste_venv) rafatieppo@rt-av52a:~/.virtualenvs$

Instalação no Windows

  • Se não possuir Python3 ou superior instalado no Windows

Acesse https://python.org.br/instalacao-windows/ e instale a versão do Python 3 (versão 3.8 ou superior), basta seguir as instruções. Não esqueça de instalar o PIP.

Recomenda-se criar um ambiente virtual para instalar os pacotes e executar o lucyLattes.

Ambiente virtual python (virtual environments) no Windows

  • De modo simplista:
  1. Acesse o Power Shell como Administrador (botão direito) e libere a execução de Scripts. Se quiser saber mais Microsot

No Power Shell digite:

Set-ExecutionPolicy Unrestricted

pressione S ou Y.

  1. Crie uma pasta (diretório) que neste exemplo é denominada teste_venv:
C:\Users\Joao\> mkdir teste_venv
  1. Crie o ambiente virtual na pasta que foi criada:
C:\Users\Joao\> python3 -m venv ./teste_venv
  1. Ative seu ambiente virtual.
C:\Users\Joao\> \teste_venv\Scripts\activate

Pronto, agora é só instalar as bibliotecas com o pip e posteriormente executar o LucyLattes.

  1. Para desativar o ambiente virtual.
(teste_venv) C:\Users\Joao\> deactivate
C:\Users\Joao\>

Pacotes Python

Para todos os sistemas operacionais (Linux, MacOS, Windows, Solaris, etc) são necesssários as mesmas bibliotecas. Para instalar as bibliotecas em ambientes Linux acesse o Terminal, ative o seu ambiente Python e instale os pacotes.

Posteriormente, com o ambiente virtual ATIVADO, instale os pacotes necessários. No arquivo requirements_lucyLattes.txt está listado os pacotes necessários. Com o pip é possível executar o comando pip install -r requirements_lucyLattes,txt , e possivelmente os pacotes serão instalados. Ou ainda, vc pode instalar um pacote por vez.

(teste_venv) C:\Users\Joao\>  pip install numpy
Collecting numpy
  Cache entry deserialization failed, entry ignored
  Downloading https://files.pythonhosted.org/packages/b8/46/40729c784/numpyx86_64.whl (14.1MB)
    100% |████████████████████████████████| 14.1MB 128kB/s 
Installing collected packages: numpy
Successfully installed numpy-1.21.1
(teste_venv) C:\Users\Joao\>

Como executar o programa

  1. Faça o Download do arquivo .zip que contém o lucyLattes. Download aqui: https://rafatieppo.github.io/lucylattes/. Escolha a opção .zip ou .tar para fazer o download dos aquivos.

  2. Descompacte o arquivo .zip que em um diretório de sua preferência.

  3. Faça o dowload dos curriculos Lattes desejados e copie todos no diretório xml_zip. Para realizar o download dos currículos Lattes, acesse o currículo Lattes do pesquisador, e no canto superior direito clique sobre um botão XML, salve o arquivo e NÃO altere o nome e nem o formato, e NÃO DESCOMPACTE OS ARQUIVOS. O nome do arquivo é composto por 16 caracteres e a extensão .zip, e.g. 3275865819287843.zip.

  4. Pelo terminal (ou power shell), e com o ambiente virtual ATIVADO, acesse o diretório descompactado, e digite:

  • Se for em ambiente Linux:

python3 app_lucyLattes.py

  • Se for em ambiente Windows

python.exe app_lucyLattes.py (ou algo similar)

  1. Se tudo ocorreu corretamente, uma interface aparecerá:

Agora selecione as opções disponíveis, clique em Gravar configurações, e execute (Run lucyLattes). Se tudo ocorreu normalmente, há um relatório disponível na pasta ./relatorio . Abra o arquivo relatorio_producao.html com o Firefox ou com o navegador da sua preferência.

Observações

**Atenção**, **Atenção**, **Atenção**.

Gostou?

Espero que o lucyLattes seja útil de alguma forma, dentro do possível estarei melhorando o script na sua funcionalidade.

  • Nos de uma estrela clicando na estrela no topo da página (lado direito)

  • Caso queira, sinta-se livre para me pagar um cafézinho. Tudo que faço aqui é uma maneira de retribuir e compartilhar o conhecimento que adquiri ao longo da minha carreira, mas quem sou eu para negar um café, certo? Sua ajuda vai ser convertida para manter os scripts (pagando o provedor, por exemplo). O excedente, será utilizado para comprar café mesmo.

  • via Paypal

  • via Pix

Development

  • TODO DANGER create a exceptio for NO papers found for reseacher.

  • DONE read zip and return a xml;

  • DONE create a minidom from .xml;

  • DONE a function to return .xml encoding and version;

  • DONE get dados-gerais and create a csv file for each researcher;

  • DONE get research and extension projects with their respective participants, classification of the type of project (research or extension) by organizing the data into a DataFrame and export in a csv file for each researcher;

  • DONE get published papers in journal by organizing the data into a DataFrame and export in a csv file for each researcher;

  • DONE get published BOOKS organizing the data into a DataFrame and export in a csv file for each researcher;

  • DONE get published CHAPTERS organizing the data into a DataFrame and export in a csv file for each researcher;

  • DONE get advising for master, doc, pos-doc and others

  • DONE get teaching courses for each institution

  • DONE get short courses from others types of technical production

  • DONE assign qualis and jcr for each paper;

  • DONE Tidy data [100%]

    • create algorithm to drop Titles by means cosine similarity
    • tidy script data to join data from all researchers;
    • tidy script to drop NaN, delete broked registers, etc
  • TODO Running and config [100%]

    • conditional to run or not index-h getindex_hwebsci()
    • work on a GUI
  • TODO Grapho for interactions among researchers [80%]

    • interactions among researchers for papers;
    • researchers with out interaction are listed;
    • plot interaction
    • Calcular o peso das interações dos membros no grafo;
    • Verificar as interações nos projetos de pesquisa e extensão;
  • TODO Gerar índices utilizados pela CAPES para avaliação de PPG [0%]

    • Índice de Orientação (IndOri)
    • Índice de discentes autores (IndAut)
    • Índice de produtos com autoria discente (IndDis)
    • Índice de Produtividade referente a artigos científicos do Programa (IndProdArt)
    • Validação
  • DONE Analyze H-index from WOS

  • TODO Report .html [93%]

    • setup file (report_setup.py) to report.py;
    • list of researcher with city, state, linl lattes, update, orcid;
    • list of research and extension projects;
    • list of books and chapters;
    • summary (by year) of the papers, books, chapters for researchers group;
    • summary (by qualis) of the papers, books, chapters for researchers group;
    • plot (year and qualis) of the papers, books, chapters for researchers group;
    • summary of teaching, books, chapters by each researcher;
    • summary of finished advising
    • summary of running advising
    • summary of papers by year and qualis
    • summary for each researcher (papers, projects, advising)
    • summary WOS
    • improve the name files output for hindex_websci_papers.csv hindex_websci_allgroup.csv etc ... it is confuse.
    • create a support_report.py file to decrease number of lines and improve the quality, maybe I should work with Classes.
    • create a function to fit yaxis in all plots
  • DONE Remove files

    • csv files in folder csv_producao;
    • csv files in folder csv_report;

Files

  • config.txt: minimal configurations to run lucylattes, it is possible to assign period (year), qualis group, etc.
  • lucyLattes.py: run all;
  • lucyLattes.py: funciona como o executável;
  • ./resources/read_set_config.py: is a class to assing configurations;
  • ./resources/getadv_minidom.py: write a .csv with advising data from each .xml;
  • ./resources/getadvrunning_minidom.py: write a .csv with running advising data from each .xml;
  • ./resources/getbooks_minidom.py: write a .csv with books data from each .xml;
  • ./resources/getchapters_minidom.py: write a .csv with chapters data from each .xml;
  • ./resources/getencoding_minidom.py: return enconding and version from .xml;
  • ./resources/getgeneraldata_minidom.py: write a .csv with dados-gerais from each .xml;
  • ./resources/getgeneraldata_grad_minidom.py: write a .csv with formacao-academica graduacao from each .xml;
  • ./resources/getgeneraldata_mest_minidom.py: with formacao-academica mestrado from each .xml;
  • ./resources/getgeneraldata_dout_minidom.py: with formacao-academica doutorado from each .xml;
  • ./resources/getminidom_xmlfile.py: return a minidom from each .xml;
  • ./resources/getpapers_minidom.py: write a .csv with papers data from each .xml;
  • ./resources/getresearchextproj_minidom.py: write a .csv with research and extension projects from each .xml;
  • ./resources/getshortcourses_minidom.py: write a .csv with short courses from each .xml;
  • ./resources/getteaching_minidom.py: write a .csv with teaching courses from each .xml;
  • ./resources/getworksevents.py: to get all TRABALHOS-EM-EVENTOS;
  • ./resources/grapho.py: make a plot for interections among researchers;
  • ./resources/index_capes.py: calcula os indicadores CAPES;
  • ./resources/paper_jcr.py: assign jcr score for each paper;
  • ./resources/paper_qualispy: assign qualis score for each paper;
  • ./resources/read_list_from_txt.py: read lines from a txt files and returns a list.
  • ./resources/removefiles_csvproducao.py: remove csv files in folders ./csv_producao/ ./csv_producao_hindex/ ./relatorio/csv_report/ ;
  • ./resources/report.py: Write a report with plots and summaries;
  • ./resources/report_class_filteryear.py: a class to improve report_setup function, a filter for productions;
  • ./resources/report_setup.py: Analize procuctions file, create setup file, csv to generat report.
  • ./resourcer/report_setup_dict: create a dictionaru to aid in report_setup.py;
  • ./resources/support_report_indexh.py: functions to aid in index-h calculation;
  • ./resources/support_report.py: functions to aid in report.py
  • ./resources/tidydata_csv.py:
    • this script tidy all csv into folder csv_producao;
    • there are several functions, each one for a kind of data (papers, ppe, ...);
    • it creates a file xxxxxx_all.csv with the same kind of data for all researchers (e.g. fullname_all.csv, papers_all.csv);
    • it creates a file xxxxxx_uniq.csv with the same kind of data for all researchers, HOWEVER in this file there is NO duplicates. Thus a specific paper or project, etc, belongs for am unique reseacher. To assign the owner of the paper or project, etc, the authorship order is used. See ./resources/tidydata_uniq_titles.py:
    • from lucyLattes version 1.0, the script verify.py was emboided into tidydata_csv.py, it drops rows with NaN values on field YEAR
      • function for general data;
      • function for research and extension projects;
      • functions for papers, books, chapters, advising, teaching.
  • ./resources/tidydata_uniq_titles.py:
    • working on file from tidydata_csv.py, it creates a file xxxxxx_uniq.csv with NO TITLES duplicates. Thus a specific paper or project, etc, belongs for am unique reseacher. To assign the owner of the paper or project, etc, the authorship order is used. The duplicates TITLES are dropped by mean cosine similarity.
  • ./resources/unzip_xml.py: - unzip idlattes.zip and return a .xml;

Logs

Wed 2024-08-14 20:56:51 -04

  • new function to get FORMACAO-ACADEMICA-TITULACAO (graduacao mestrado doutorado) were implemented, the output is in csv_producao.

Mon 2024-08-12 18:03:21 -04

  • On relatorio_producao.html the initial and final period to evaluate the data (projects, papers, ...) was not working. It was because a date fitering function had not been implemented. It was solved and the report period is the same of year (initial / end) input.

Sun 2024-08-11 09:14:53 -04

  • On report.py had an error to filter projetcts, paper, etc. It was because the report.py was reading config.txt instead config_tk.txt. The issues has been solved with a new functions in support_functions.py: yearlimit_forfilter_tk() , and some changes in read_set_config.py class: configSetup. The next step is to fix filter in report.py.

Sat 2024-08-10 09:33:11 -04

  • On Windows OS there ware a error from report_resch_advi_runn_each function and others functions that generates tables from advising data. The error was in np.select. For some reason, np.select could not find a math between cond and choice lists in those functions. I guess the error was a character error, because cond list has character like: ç ã í. To solve it, in np.select the default exit was replaced by -99

Wed 2024-06-19 18:57:18 -04

  • From DADOS-GERAIS $->$ FORMACAO-ACADEMICA-TITULACAO data from DOUTORADO was add in xxx_fullname.csv

Mon 2024-05-20 22:41:04 -04

  • A simple GUI was implemented in the file app_lucyLattes.py. This GUI generates the file ./config_tk.txt with the settings to run lucyLattes.py; Some changes were implemented in the class configSetup (read_set_config.py); It was necessary to read the settings in ./config_tk.txt. The file config.txt remains, but it is useless for now; The function pg_name() was changed as well, for now it gets PG's name from ./config_tk.txt;

Tue 2024-05-14 21:02:57 -04

  • A new method to drop the duplicate TITLES has been implemented. This method is based on cosine similarity and this algorithm is in the file ./resources/tidydata_uniq_titles.py:

Sat 2023-07-15 09:07:55 -04

  • It was fixed a type error in report_setup_dict.py, in grapho_papernoint production, the function was change for columngrapho_noint. In tidydata_csv.py was created a new function to tidy worksevents. It was created a new file getworksevents.py to get all TRABALHOS-EM-EVENTOS.

Thu 2022-06-16 16:23:55 -04

  • The file config.txt is being read in lucylattes.py, and variables are assigned from the class configSetup(). It is done for run indice capes, qualis file, wos, removefiles. The frame.append method is deprecated and was replaced by pandas.concat.

Thu 2022-04-14 18:46:34 -04

  • a new function was implemented in support_functions_indexh.py, it makes a report of paper's citations for a specific year. Notice that this papers was published in this same year.

Thu 2022-03-31 19:23:55 -04

  • it was create a new function (repot_setup_dict.py) to create a dictionary with basic information to report_setup.py.

Sat 2022-03-26 16:39:41 -04

  • the class report_class_filteryear.py has been implemented. For a specific production, it finds a function to filter by years and generate a csv report file. This class is used into report_setup.py, which is cleaner than before.

Wed 2022-03-09 18:53:58 -04

  • in report_setup.py replace if by case, it is a better approach, for now its running. in repor_setup.py for running advising was implemented a fast lazy solution to solve the issue. It was because in running advising is not necessary to filter by year. The next steps are: to improve report layout, advisor and student interaction in papers.

Sun 2022-03-06 11:02:51 -04

  • report was improved, advising has been implemented (it was missing). Report aesthetics has been improved for a better visualization.

Sun 2022-02-27 11:08:02 -04

  • report is done. the output names for h index file has been improved. in the future, i should improve the code for report.py, for now its ok.

Sat 2022-02-26 18:08:39 -04

  • individual summaries are done. minor fix in the code was implemented as follow: a new folder for hindex production; report for index h (unique) and group is NOT done.

Wed 2022-02-23 20:59:44 -04

  • report group is done, individual summaries is incomplete.

Tue 2022-02-22 23:18:05 -04

  • report.py has been started. a improvement was implemented to filter the projetcts. it is because may belong partially for a period.

Mon 2022-02-21 07:15:14 -04

  • report_setup.py was created. in this versions has been created a sub-folder in relatorio to store csv files used in report.py.

Sat 2022-02-19 17:50:47 -04

  • grapho is working well. the calculation weights by interactions among researchers is done.

Wed 2022-02-17 20:32:51 -04

  • new functions to improve tidy data; it was implemented into tidydata_csv.py; the main feature is to drop rows with empty values in YEAR field.

Wed 2022-02-16 18:58:42 -04

  • the script (tidydata_csv) for tidy and join all data in only one csv for each production is done. There are two kinds of joinned csv, xxxxx_all.csv and xxxxx_uniq.csv.

Tue 2022-02-15 22:48:25 -04

  • the papers were classified by qualis and jcr

Tue 2022-02-15 20:48:58 -04

  • Short courses was collected from xml file, and a csv is created. For all csv files a column with ID (id lattes) was add. It makes easir to manipulate data in the future. Otherwise, the csv file will be a little bit greater.

Mon 2022-02-14 22:47:16 -04

  • Advising for master, doc, pos-doc and other were collected from xml file, and a csv is created.

Tue 2022-02-08 21:06:43 -04

  • From papers published were add a new feature: from each author if there is the idCNPQ it is extracted. Data from books and chapters are alredy done.

Wed 2022-02-02 18:59:00 -04

  • Papers published in journal were collected from a xml file, and a csv is created. It is necessary add QUALIS and JCR

Wed 2022-02-02 15:02:03 -04

  • Extraction of the projects in the same year has been solved.

Tue 2022-02-01 19:03:44 -04

  • Research and extension projects were collected from xml file, and a csv is created. It is necessary to review a some extension projetcs wich start in the same year.

Mon 2022-01-31 16:11:11 -04

  • DADOS-GERAIS were collected from xml file, and a csv is created; A git repo has been created.

Thu 2022-01-18 14:39:22 -04

  • Version 2.0 has been started

Referências

J. P. Mena-Chalco e R. M. Cesar-Jr. scriptLattes: An open-source knowledge extraction system from the Lattes platform. Journal of the Brazilian Computer Society, vol. 15, n. 4, páginas 31--39, 2009.

Rossum, G. van ( C. voor W. en I. (CWI)). (1995). Python tutorial. Python (Vol. 206). Amsterdam.

https://docs.python.org/pt-br/3/library/venv.html

https://docs.python.org/pt-br/3/tutorial/venv.html

Autor

xml schemas

  • general data
<CURRICULO-VITAE
    <DADOS-GERAIS
        <RESUMO-CV
        <ENDERECO
            <ENDERECO-PROFISSIONAL
        </ENDERECO>
    </DADOS-GERAIS>
  • ppe
<CURRICULO-VITAE
    <ATUACOES-PROFISSIONAIS>
        <ATUACAO-PROFISSIONAL
            <ATIVIDADES-DE-PARTICIPACAO-EM-PROJETO>
                <PARTICIPACAO-EM-PROJETO
                    <PROJETO-DE-PESQUISA
                        <EQUIPE-DO-PROJETO>
                        </EQUIPE-DO-PROJETO>
                    </PROJETO-DE-PESQUISA>
                </PARTICIPACAO-EM-PROJETO>
            </ATIVIDADES-DE-PARTICIPACAO-EM-PROJETO>
        </ATUACAO-PROFISSIONAL>
    </ATUACOES-PROFISSIONAIS>
  • books
<CURRICULO-VITAE
    <PRODUCAO-BIBLIOGRAFICA>
        <LIVROS-E-CAPITULOS>
            <LIVROS-PUBLICADOS-OU-ORGANIZADOS>
                <LIVRO-PUBLICADO-OU-ORGANIZADO>
                    <DADOS-BASICOS-DO-LIVRO />
                    <AUTORES />
                </LIVRO-PUBLICADO-OU-ORGANIZADO
            </LIVROS-PUBLICADOS-OU-ORGANIZADOS>
        </LIVROS-E-CAPITULOS
    </PRODUCAO-BIBLIOGRAFICA>
  • chapters
<CURRICULO-VITAE
    <PRODUCAO-BIBLIOGRAFICA>
        <LIVROS-E-CAPITULOS>
            <CAPITULOS-DE-LIVROS-PUBLICADOS>
                <CAPITULO-DE-LIVRO-PUBLICADO>
                    <DADOS-BASICOS-DO-CAPITULO />
                    <AUTORES />
                </CAPITULO-DE-LIVRO-PUBLICADO
            </CAPITULOS-DE-LIVROS-PUBLICADOS>
        </LIVROS-E-CAPITULOS
    </PRODUCAO-BIBLIOGRAFICA>
  • advising finished
<CURRICULO-VITAE
    <OUTRA-PRODUCAO>
        <ORIENTACOES-CONCLUIDAS>
            <ORIENTACOES-CONCLUIDAS-PARA-MESTRADO
            </ORIENTACOES-CONCLUIDAS-PARA-MESTRADO>
            <ORIENTACOES-CONCLUIDAS-PARA-DOUTORADO
            </ORIENTACOES-CONCLUIDAS-PARA-DOUTORADO>
            <ORIENTACOES-CONCLUIDAS-PARA-POS-DOUTORADO
            </ORIENTACOES-CONCLUIDAS-PARA-POS-DOUTORADO>
            <OUTRAS-ORIENTACOES-CONCLUIDAS
            </OUTRAS-ORIENTACOES-CONCLUIDAS>
        </ORIENTACOES-CONCLUIDAS
    </OUTRA-PRODUCAO>
  • advising running
<CURRICULO-VITAE
    <DADOS-COMPLEMENTARES>
        <ORIENTACOES-EM-ANDAMENTO>
            <ORIENTACAO-EM-ANDAMENTO-DE-MESTRADO>
            </ORIENTACAO-EM-ANDAMENTO-DE-MESTRADO>
            <ORIENTACAO-EM-ANDAMENTO-DE-DOUTORADO>
            </ORIENTACAO-EM-ANDAMENTO-DE-DOUTORADO>
            <ORIENTACAO-EM-ANDAMENTO-DE-POS-DOUTORADO>
            </ORIENTACAO-EM-ANDAMENTO-DE-POS-DOUTORADO>
            <ORIENTACAO-EM-ANDAMENTO-DE-INICIACAO-CIENTIFICA>
            </ORIENTACAO-EM-ANDAMENTO-DE-INICIACAO-CIENTIFICA>
            <OUTRAS-ORIENTACOES-EM-ANDAMENTO>
            </OUTRAS-ORIENTACOES-EM-ANDAMENTO>
        </ORIENTACOES-EM-ANDAMENTO
    </DADOS-COMPLEMENTARES>
</CURRICULUM-VITAE>

  • teaching
<CURRICULO-VITAE
    <ATUACOES-PROFISSIONAIS>
        <ATUACAO-PROFISSIONAL
            <ATIVIDADES-DE-ENSINO>
                <ENSINO
                    <DISCIPLINA
                    </DISCIPLINA>
                </ENSINO
            </ATIVIDADES-DE-ENSINO>
        </ATUACAO-PROFISSIONAL>
    </ATUACOES-PROFISSIONAIS>
  • courses
<CURRICULO-VITAE
    <PRODUCAO-TECNICA>
        <DEMAIS-TIPOS-DE-PRODUCAO-TECNICA>
            <CURSO-DE-CURTA-DURACAO-MINISTRADO
            </CURSO-DE-CURTA-DURACAO-MINISTRADO>
        </DEMAIS-TIPOS-DE-PRODUCAO-TECNICA>
    </PRODUCAO-TECNICA>
  • papers
<CURRICULO-VITAE
    <PRODUCAO-BIBLIOGRAFICA>
        <ARTIGOS-PUBLICADOS
            <ARTIGO-PUBLICADO>
                <DADOS-BASICOS-DO-ARTIGO />
                <AUTORES />
            </ARTIGO-PUBLICADO>
        </ARTIGOS-PUBLICADOS>
    </PRODUCAO-BIBLIOGRAFICA>
  • worksevents
<CURRICULO-VITAE
    <PRODUCAO-BIBLIOGRAFICA>
        <TRABALHOS-EM-EVENTOS>
            <TRABALHO-EM-EVENTOS>
                <DADOS-BASICOS-DO-EVENTO />
            </TRABALHO-EM-EVENTOS>
                <AUTORES />
        </TRABALHOS-EM-EVENTOS>
    </PRODUCAO-BIBLIOGRAFICA>

About

lucyLattes script para a extração e compilação de dados do currículo Lattes

Resources

License

Stars

Watchers

Forks

Packages

No packages published