The goal of GPStream is to process GPS generated data such as used in sports apps and wearable devices. You can find functions to load the data and process it. The package can read streams of GPS readings, consisting in latitude, longitude, elevation and time and compute several features for each measure.
GPS data streams can be obtained several ways. The most common file format is GPX files, an XML variant for GPS readings, but fit files (from Garmin devices) and KML files are also supported. Some sports apps like strava offers API services from which streams can be obtained.
For more information about gathering GPX/fit files from strava follow the steps described by marcusvolz/strava
For more information about gathering streams from strava API follow the steps described by fawda123/rStrava
This package contains raw files and sample data as it comes from the latter alternative. Both activity metadata and streams are available, corresponding to activities recorded by the author
This is the development repository for GPStream, an R package to analyze data from a GPS stream. The development version from GitHub can be installed and loaded as follows:
# install.packages("remotes")
remotes::install_github("raimun2/GPStream")
This is a basic example which shows you how to load sample data:
library(GPStream)
data(strava_streams)
act_streams <- strava_streams
Data can also be loaded from stream files such as GPX or fit files
gpx_stream <- read_stream("inst/extdata/gpx_activity.gpx")
str(gpx_stream)
#> tibble [2,510 x 4] (S3: tbl_df/tbl/data.frame)
#> $ lat : num [1:2510] -33.4 -33.4 -33.4 -33.4 -33.4 ...
#> $ lon : num [1:2510] -70.6 -70.6 -70.6 -70.6 -70.6 ...
#> $ ele : num [1:2510] 772 771 772 771 771 ...
#> $ timestamp: POSIXct[1:2510], format: "2020-08-10 19:36:38" "2020-08-10 19:36:39" ...
fit_stream <- read_stream("inst/extdata/fit_activity.fit")
str(fit_stream)
#> tibble [2,510 x 10] (S3: tbl_df/tbl/data.frame)
#> $ timestamp : POSIXct[1:2510], format: "2020-08-10 19:36:38" "2020-08-10 19:36:39" ...
#> $ position_lat : num [1:2510] -33.4 -33.4 -33.4 -33.4 -33.4 ...
#> ..- attr(*, "units")= chr "degrees"
#> $ position_long : num [1:2510] -70.6 -70.6 -70.6 -70.6 -70.6 ...
#> ..- attr(*, "units")= chr "degrees"
#> $ distance : num [1:2510] 2.16 4.75 12.66 15.35 18.86 ...
#> ..- attr(*, "units")= chr "m"
#> $ altitude : num [1:2510] 772 771 772 771 771 ...
#> ..- attr(*, "units")= chr "m"
#> $ speed : num [1:2510] 1.16 1.29 2.36 2.48 2.5 ...
#> ..- attr(*, "units")= chr "m/s"
#> $ heart_rate : int [1:2510] 106 108 111 114 117 121 125 127 130 133 ...
#> ..- attr(*, "units")= chr "bpm"
#> $ cadence : int [1:2510] 47 47 76 76 77 79 79 79 79 80 ...
#> ..- attr(*, "units")= chr "rpm"
#> $ temperature : int [1:2510] 27 27 27 27 27 27 27 27 27 27 ...
#> ..- attr(*, "units")= chr "C"
#> $ fractional_cadence: num [1:2510] 0.5 0.5 0.5 0.5 0 0.5 0.5 0 0 0 ...
#> ..- attr(*, "units")= chr "rpm"
As can be seen, not all files contains the same naming convention for coordinates, so we follow the lat, lon, ele, timestamp, time convention for latitude, longitude, elevation and time signature respectively. This convention is implemented in uniform_stream() function.
clean_stream1 <- act_streams %>% uniform_stream() %>% filter(id == unique(act_streams$id)[1])
clean_stream2 <- gpx_stream %>% uniform_stream()
clean_stream3 <- fit_stream %>% uniform_stream()
str(clean_stream2)
#> tibble [2,510 x 5] (S3: tbl_df/tbl/data.frame)
#> $ lon : num [1:2510] -70.6 -70.6 -70.6 -70.6 -70.6 ...
#> $ lat : num [1:2510] -33.4 -33.4 -33.4 -33.4 -33.4 ...
#> $ ele : num [1:2510] 772 771 772 771 771 ...
#> $ time : num [1:2510] 0 1 4 5 6 9 11 12 15 18 ...
#> $ timestamp: POSIXct[1:2510], format: "2020-08-10 19:36:38" "2020-08-10 19:36:39" ...
In several occasions elevation readings can be corrupted or missing, so the ele_correction() function is implemented, obtaining elevation data from a digital elevation model (DEM) available in the elevatr package, or in a local DEM if available.
correct_elevation <- clean_stream2 %>% ele_correction(replace = FALSE, z = 14)
#> Mosaicing & Projecting
#> Note: Elevation units are in meters.
ggplot(correct_elevation, aes(x=time)) +
geom_line(aes(y=ele)) +
geom_line(aes(y=ele_DEM), col="red")
In other cases, even lat and lon values can be corrupted and therefore need smoothing in order to represent distances correctly. Smoothing can be also applied to interpolate a stream and obtaining an even spaced model of the activity
smooth_act <- correct_elevation %>% smooth_stream(interpolate = TRUE, alpha = 0.05, replace = TRUE)
ggplot(correct_elevation, aes(lon, lat)) +
geom_point() +
geom_point(data = smooth_act, col="red", size=0.7)
So far we have corrected coordinates, but we can also estimate different differential features, such as slope, distance, elevation gain/loss, speed, etc. For this purposes is the function differential_stream
diff_stream <- smooth_act %>% differential_stream()
str(diff_stream)
#> 'data.frame': 5639 obs. of 19 variables:
#> $ time : int 1 2 3 4 5 6 7 8 9 10 ...
#> $ lon : num -70.6 -70.6 -70.6 -70.6 -70.6 ...
#> $ lat : num -33.4 -33.4 -33.4 -33.4 -33.4 ...
#> $ ele : num 773 773 772 772 772 ...
#> $ delta_distance: num 0 3.57 3.55 3.52 3.5 ...
#> $ distance : num 0 3.57 7.11 10.64 14.14 ...
#> $ azimuth : num 180 162 180 180 180 ...
#> $ delta_ele : num 0 -0.1057 -0.1034 -0.1011 -0.0988 ...
#> $ dplus : num 0 0 0 0 0 0 0 0 0 0 ...
#> $ dminus : num 0 -0.1057 -0.1034 -0.1011 -0.0988 ...
#> $ slope : num 0 -0.0296 -0.0292 -0.0287 -0.0282 ...
#> $ delta_time : num 0 1 1 1 1 1 1 1 1 1 ...
#> $ hz_velocity : num 0 3.57 3.55 3.52 3.5 ...
#> $ hz_accel : num 0 3.57 3.55 3.52 3.5 ...
#> $ pace : num 0 4.67 4.7 4.73 4.76 ...
#> $ vert_velocity : num 0 -0.1057 -0.1034 -0.1011 -0.0988 ...
#> $ vert_accel : num 0 -0.1057 -0.1034 -0.1011 -0.0988 ...
#> $ velocity : num 0 3.57 3.55 3.53 3.5 ...
#> $ accel : num 0 3.57 3.55 3.53 3.5 ...
We can also compare two streams to check if they correspond to the same route. The match stream function checks the spatial and sequential continuity of a stream with respect to a reference stream.
For example, with matching streams the function returns the first row and length of the first stream where it matches the second one.
data <- clean_stream1
route <- clean_stream2
match_stream(data, route)
#> [,1] [,2]
#> [1,] 1 2510
If we invert the order of the second stream the function detects it
data <- clean_stream1
route <- clean_stream2[nrow(clean_stream2):1,]
match_stream(data, route)
#> [1] "stream match in reverse order"
Also detects if first stream matches partially with second stream
data <- clean_stream1
route <- act_streams %>% uniform_stream() %>%
filter(id == unique(act_streams$id)[4])
match_stream(data, route)
#> [1] "stream match partially with route: 95% overlap"
which is different from intersecting streams which diverges on other ends
data <- clean_stream1
route <- act_streams %>% uniform_stream() %>%
filter(id == unique(act_streams$id)[15])
match_stream(data, route)
#> [1] "streams intersect but dont match"
Finally it also identifies when streams don’t intersect at all
data <- clean_stream1
route <- act_streams %>% uniform_stream() %>%
filter(id == unique(act_streams$id)[20])
match_stream(data, route)
#> [1] "streams do not intersect"
One can also aggregate segments of streams according to distance or time, and using a direct splitting or rolling window. The following code will produce 60 second segments with direct segmentation
stream_segmentation <- clean_stream2 %>% differential_stream()
straigth_segments <- agg_stream(stream_segmentation, value = "time", size = 60, windowed = FALSE)
glimpse(straigth_segments)
#> Rows: 64
#> Columns: 9
#> $ id_seg <dbl> 1, 2, 3, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 2~
#> $ delta_time <dbl> 65, 60, 60, 63, 60, 61, 61, 60, 61, 60, 60, 63, 60, 60,~
#> $ delta_distance <dbl> 174.47843, 75.83025, 56.49995, 53.69199, 43.44374, 59.9~
#> $ dplus <dbl> 3.4, 18.0, 18.4, 19.4, 19.0, 17.2, 19.2, 16.8, 19.0, 17~
#> $ dminus <dbl> -3.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,~
#> $ time <dbl> 94.0000, 150.2143, 210.0357, 391.0323, 450.6207, 509.00~
#> $ distance <dbl> 271.2420, 375.1426, 437.9847, 568.2078, 613.1533, 663.5~
#> $ ele <dbl> 771.9700, 781.9643, 800.3214, 855.2968, 874.2621, 892.2~
#> $ speed <dbl> 2.6842835, 1.2638375, 0.9416658, 0.8522538, 0.7240623, ~
This will produce 100 meters segments with direct segmentation
straigth_segments_d <- agg_stream(stream_segmentation, value = "distance", size = 100, windowed = FALSE)
glimpse(straigth_segments_d)
#> Rows: 39
#> Columns: 9
#> $ id_seg <dbl> 2, 3, 4, 6, 7, 8, 11, 14, 16, 19, 21, 23, 26, 28, 30, 3~
#> $ delta_time <dbl> 38, 67, 121, 114, 119, 129, 127, 112, 86, 78, 142, 173,~
#> $ delta_distance <dbl> 109.8736, 103.5823, 102.0926, 100.3839, 100.0590, 100.7~
#> $ dplus <dbl> 1.2, 16.8, 37.0, 34.2, 36.8, 38.0, 37.4, 28.0, 23.2, 17~
#> $ dminus <dbl> -2.4, -0.4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0~
#> $ time <dbl> 85.7000, 134.9333, 227.4909, 487.6364, 600.9492, 730.25~
#> $ distance <dbl> 248.8796, 354.8144, 452.0530, 644.9652, 749.6557, 851.1~
#> $ ele <dbl> 772.2000, 777.6533, 805.4764, 885.6473, 919.3254, 958.1~
#> $ speed <dbl> 2.8914100, 1.5460042, 0.8437407, 0.8805604, 0.8408323, ~
And the following will produce same length segments using rolling window method, see the number of rows produces
windowed_segments_d <- agg_stream(stream_segmentation, value = "distance", size = 100, windowed = TRUE)
glimpse(windowed_segments_d)
#> Rows: 1,292
#> Columns: 9
#> $ id_seg <chr> "seg26", "seg34", "seg54", "seg77", "seg99", "seg120", ~
#> $ delta_time <dbl> 34, 33, 34, 36, 38, 43, 38, 39, 40, 35, 38, 36, 46, 50,~
#> $ delta_distance <dbl> 106.1558, 101.9668, 102.1285, 104.2324, 105.9792, 117.8~
#> $ dplus <dbl> 2.0, 2.0, 1.8, 1.8, 1.4, 2.2, 1.2, 1.0, 1.0, 1.0, 1.2, ~
#> $ dminus <dbl> -0.8, -0.6, -0.6, -0.8, -1.2, -0.6, -0.6, -1.2, -2.4, -~
#> $ time <dbl> 22.33333, 28.12500, 35.28571, 40.42857, 47.75000, 56.60~
#> $ distance <dbl> 67.81398, 85.78087, 107.69745, 122.58780, 142.75857, 16~
#> $ ele <dbl> 771.7111, 771.9250, 772.1714, 772.3143, 772.3500, 772.6~
#> $ speed <dbl> 3.122228, 3.089904, 3.003778, 2.895346, 2.788926, 2.741~
In summary, several functions can be combined to read and analyze GPS streams obtained from physical activities or other sources
clean_stream <-
read_stream("inst/extdata/fit_activity.fit") %>%
uniform_stream() %>%
ele_correction(replace = FALSE) %>%
smooth_stream(interpolate = FALSE, alpha = 0.05, replace = FALSE) %>%
differential_stream()
ggplot(clean_stream, aes(lon,lat)) +
geom_point(aes(size=abs(slope), col=hz_velocity)) +
scale_color_viridis_c()