This repository contains the source files of our research on DeepCADD: a Deep Neural Network for Automatic Detection of Coronary Artery Disease (CAD). The study contains three main features: CAD segmentation using mainly the Frangi filter; CAD Classification using a ResNet-50; CAD detection using a Mask R-CNN-based architecture.
This repository contains the following algorithms:
- Right Coronary Artery (RCA) Segmentation, introduced in [2], which provides a technique for image segmentation of the right coronary artery (RCA) main segment. See experiment at
segmentation/CAD-segmentation.ipynb
- CNN for coronary segment classification, introduced in [1], which evaluates the performance of ResNet-50 architecture on classifying CAD segments into
stenosed
andnon-stenosed
. See experiment atcolab/DeepCADD-backbone-ResNet50.ipynb
- Mask R-CNN for CAD detection, introduced in [1], which introduces the use of Mask-RCNN for CAD detection. See experiment at
colab/DeepCADD-running-with-ResNet50-backbone.ipynb
andcolab/DeepCADD-training-with-ResNet50.ipynb
-
S. A. Freitas, F. A. Zeiser, C. A. Da Costa and G. De O. Ramos, “DeepCADD: A Deep Learning Architecture for Automatic Detection of Coronary Artery Disease,” 2022 International Joint Conference on Neural Networks (IJCNN), 2022, pp. 1-8. [link].
-
FREITAS, Samuel A.; RAMOS, Gabriel de O.; COSTA, Cristiano André da. DEEPCADD: A Deep Neural Network for Automatic Detection of Coronary Artery Disease. In: CONCURSO DE TESES E DISSERTAÇÕES - SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLICADA À SAÚDE (SBCAS), 22. , 2022, Teresina/PI. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022 . p. 25-32. ISSN 2763-8987. [link].
-
FREITAS, Samuel A.; NIENOW, Débora; COSTA, Cristiano A. da; RAMOS, Gabriel de O.. Functional Coronary Artery Assessment: a Systematic Literature Review. In: Wiener Klinische Wochenschrift, 2021. [link]
-
FREITAS, Samuel A.; COSTA, Cristiano A. da; RAMOS, Gabriel de O.. Coronary Artery Disease Automatic Classification. In: ESCOLA REGIONAL DE COMPUTAÇÃO APLICADA À SAÚDE (ERCAS), 8. , 2021, São Paulo. Anais […]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 26-29. [link]
-
FREITAS, Samuel; RAMOS, Gabriel; SCHMITH, Jean; COSTA, Cristiano. Nodal Analysis for Coronary Artery Ischemia Diagnosis. In: SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLICADA À SAÚDE (SBCAS), 20. , 2020, Evento Online. Anais […]. Porto Alegre: Sociedade Brasileira de Computação, 2020 . p. 262-272. [link]
-
NIENOW, Débora; FREITAS, Samuel; SCHMITH, Jean. Software para auxílio no diagnóstico de estenoses em artérias coronárias. Arq. Bras. Cardiol: 113 (2 sup l. 1) p. 254. 2019. [link]
Before you begin, ensure you have met the following requirements:
- Python v3.6
- Tensorflow v1.x
- h5py v2.10.0
- Ipython v7.31.0
- OpenCV v4.1.2
We decided to execute all the experiments using Google Colab PRO, powered by the existing available libraries and avoiding to overload the local machine.
For CAD segmentation
, copy the notebook available at segmentation/CAD-segmentation.ipynb
.
For DeepCADD backbone
classification, copy the notebook available at colab/DeepCADD-backbone-ResNet50.ipynb
.
For DeepCADD
detection, copy the notebook available at colab/DeepCADD-training-with-ResNet50.ipynb
.
tbc
Thanks to the following people who have contributed to this project:
For citing this work, please use the following entries. For entries of the other works, go to https://armbrustsamuel.github.io/publications/.
@INPROCEEDINGS{freitas2022ijcnn,
author={Freitas, Samuel A. and Zeiser, Felipe A. and Da Costa, Cristiano A. and De O. Ramos, Gabriel},
booktitle={2022 International Joint Conference on Neural Networks (IJCNN)},
title={DeepCADD: A Deep Learning Architecture for Automatic Detection of Coronary Artery Disease},
year={2022},
pages={1-8},
doi={10.1109/IJCNN55064.2022.9892501}}
@article{freitas2021functional,
title={Functional Coronary Artery Assessment: a Systematic Literature Review},
author={Freitas, Samuel A and Nienow, D{\'e}bora and da Costa, Cristiano A and Ramos, Gabriel de O},
journal={Wiener klinische Wochenschrift},
pages={1--17},
year={2021},
publisher={Springer}
}
This project uses the following license: MIT.