Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion documentation/asciidoc/computers/config_txt/video.adoc
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ To control HDMI settings, use the xref:configuration.adoc#set-resolution-and-rot

==== HDMI Pipeline for Raspberry Pi 4

In order to support dual displays and modes up to 4k60, the Raspberry Pi 4 generates 2 output pixels for every clock cycle.
In order to support dual displays and modes up to 4Kp60, the Raspberry Pi 4 generates 2 output pixels for every clock cycle.

Every HDMI mode has a list of timings that control all the parameters around sync pulse durations. These are typically defined via a pixel clock, and then a number of active pixels, a front porch, sync pulse, and back porch for each of the horizontal and vertical directions.

Expand Down
2 changes: 1 addition & 1 deletion documentation/asciidoc/computers/processors/bcm2712.adoc
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

Broadcom BCM2712 is the 16nm application processor at the heart of Raspberry Pi 5. It is the successor to the BCM2711 device used in Raspberry Pi 4, and shares many common architectural features with other devices in the BCM27xx family, used on earlier Raspberry Pi products.

Built around a quad-core Arm Cortex-A76 CPU cluster, clocked at up to 2.4GHz, with 512KB per-core L2 caches and a 2MB shared L3 cache, it integrates an improved 12-core VideoCore VII GPU; a hardware video scaler and HDMI controller capable of driving dual 4kp60 displays; and a Raspberry Pi-developed HEVC decoder and Image Signal Processor. A 32-bit LPDDR4X memory interface provides up to 17GB/s of memory bandwidth, while x1 and x4 PCI Express interfaces support high-bandwidth external peripherals; on Raspberry Pi 5 the latter is used to connect to the Raspberry Pi RP1 south bridge, which provides the bulk of the external-facing I/O functionality on the platform.
Built around a quad-core Arm Cortex-A76 CPU cluster, clocked at up to 2.4GHz, with 512KB per-core L2 caches and a 2MB shared L3 cache, it integrates an improved 12-core VideoCore VII GPU; a hardware video scaler and HDMI controller capable of driving dual 4Kp60 displays; and a Raspberry Pi-developed HEVC decoder and Image Signal Processor. A 32-bit LPDDR4X memory interface provides up to 17GB/s of memory bandwidth, while x1 and x4 PCI Express interfaces support high-bandwidth external peripherals; on Raspberry Pi 5 the latter is used to connect to the Raspberry Pi RP1 south bridge, which provides the bulk of the external-facing I/O functionality on the platform.

Headline features include:

Expand Down