Skip to content

repo4nlp/code

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

code

We herein describe how to train the debias layer on top of LLM step by step, and obtain zero-shot sentiment prediction results.

Prerequisites

Please create a virtual environment and install all necessary packages for training and evaluation.

pip install -r requirements.txt

Then, git clone this repository

git clone https://github.com/repo4nlp/code.git

Please put positive.txt, negative.txt, and neutral.txtthat obtained from https://github.com/repo4nlp/data in the root directory.

Training the debias layer for LLM

python train.py 
    --model_name_or_path {roberta-base,bert-case-cased} 
    --batch_size 10
    --eval_batch_size 50
    --lr 1e-5          
    --nb_epoch 10      
    --pos_dir 'positive.txt'
    --neu_dir 'neutral.txt'
    --neg_dir 'negative.txt'
    --prompt_text 'It was'
    --pos 'good'
    --neu 'ok'
    --neg 'bad'   

After training, the debias model will be saved in ./model_save. We will use it in inference.

Inference

Please download the sentiment datasets such as sst2 and put it in sentiment data folder here

python inference.py 
    --debias_model 'best_bert-base-cased_epoch100_bz10_lr1e-05_The_sentiment_is_positive_neutral_negative.pkl'
    --senti_data 'sentiment_dataset'

The acurracy and F1 score will be display for each sentiment dataset.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages