Neural Network Attributions: A Causal Perspective
Aditya Chattopadhyay, Piyushi Manupriya, Anirban Sarkar, Vineeth N Balasubramanian
Presented at ICML 2019
Dependencies: scikit-learn (0.19.1) scipy (0.17.0) torch (0.4.0) joblib (0.11) matplotlib (1.5.1) numpy (1.14.5) Usage- MNIST: sh run_mnist_mod.sh MNIST.ipynb Iris: python decision_tree.py train.ipynb ACE.ipynb Synthetic Dataset: toy_dataset.ipynb python evaluate_lstm.py Aircraft: python lstm.py python find_tau.py python aircraft_causal_interventions.py foldername eg. python aircraft_causal_interventions.py "40" python learn_causal_regressors.py learn effect_num_header effect eg. python learn_causal_regressors.py learn 5 LATG python causal_analysis_final.py predict effect foldername start_time eg. python causal_analysis_final.py predict GS "40" 100
NASA dataset used in Aircraft code is uploaded at https://drive.google.com/open?id=1rEZ3veRpcKH5OZKAoXuVTyC9oMnn78ra
Class-conditional Beta VAE code used in MNIST experiments is adapted from Beta VAE code from https://github.com/1Konny/Beta-VAE
If you use this code, please cite our paper:
Aditya Chattopadhyay, Piyushi Manupriya, Anirban Sarkar, Vineeth N Balasubramanian. "Neural Network Attributions: A Causal Perspective", in International Conference on Machine Learning (ICML), 2019.
Bibtex
and consider giving a star to our repository.
References:
https://github.com/1Konny/Beta-VAE
https://c3.nasa.gov/dashlink/projects/85/resources/?type=ds