Skip to content

rom42pla/big_data_project

Repository files navigation

Big Data Computing project

Overview

This notebooks are part of the project for the Big Data Computing AY2020/21 course teached by Prof. Gabriele Tolomei

Resources:

The project has been done by:

  • Romeo Lanzino, matricola 1753403, email lanzino.1753403@studenti.uniroma1.it
  • Federico Fontana, matricola 1744946, email fontana.1744946@studenti.uniroma1.it

drawing

Task

We have decided to tackle semi-supervised multi-class images classification, consisting of a dataset with both labeled and (a large amount of) unlabeled samples [Van Engelen, Hoos, 2019, A survey on semi-supervised learning]

Dataset

We've chosen STL-10 [Coates, Lee, Ng, 2011, An Analysis of Single Layer Networks in Unsupervised Feature Learning], which is an image recognition dataset with a corpus of 100K unlabeled images, 5K labeled training images and 8K labeled test images, covering 10 different classes.

Workflow

  • download, analyze and preprocess the dataset
  • contrast the curse of dimensionality using dimensionality reduction techniques such as a CNN
  • train a model (such as a MLP) on the labeled training images
  • pseudo-label the unlabeled images using the model trained in the previous step
  • train a second model using also the pseudo-labeled images
  • evaluate the results of both models to see if there have been some improvements
  • implement an image search engine that, given a query image as input, returns a list of relevant images in a gallery (disjointed from the query images set)
  • perform an example of adversarial attack

How to run the notebooks

Check instructions.md

Results

Classification

Base model

{'accuracy': 0.669375,
 'f1': 0.6717551753303268,
 'mcc': 0.6335526776740902,
 'weightedFalsePositiveRate': 0.036736111111111115,
 'weightedPrecision': 0.680093714461409,
 'weightedRecall': 0.669375,
 'weightedTruePositiveRate': 0.669375}
 
              precision    recall  f1-score   support

    airplane       0.74      0.81      0.77       800
        bird       0.68      0.69      0.68       800
         car       0.85      0.82      0.84       800
         cat       0.54      0.47      0.50       800
        deer       0.64      0.62      0.63       800
         dog       0.42      0.59      0.49       800
       horse       0.66      0.62      0.64       800
      monkey       0.66      0.53      0.59       800
        ship       0.86      0.76      0.81       800
       truck       0.76      0.78      0.77       800

    accuracy                           0.67      8000
   macro avg       0.68      0.67      0.67      8000
weighted avg       0.68      0.67      0.67      8000

roc_base

Final model

{'accuracy': 0.660375,
 'f1': 0.6616909977888196,
 'mcc': 0.6229632711502258,
 'weightedFalsePositiveRate': 0.03773611111111111,
 'weightedPrecision': 0.6654451885476704,
 'weightedRecall': 0.660375,
 'weightedTruePositiveRate': 0.660375}
 
              precision    recall  f1-score   support

    airplane       0.73      0.74      0.74       800
        bird       0.67      0.67      0.67       800
         car       0.86      0.80      0.83       800
         cat       0.53      0.49      0.51       800
        deer       0.61      0.64      0.63       800
         dog       0.44      0.54      0.48       800
       horse       0.64      0.64      0.64       800
      monkey       0.64      0.53      0.58       800
        ship       0.79      0.80      0.79       800
       truck       0.75      0.76      0.75       800

    accuracy                           0.66      8000
   macro avg       0.67      0.66      0.66      8000
weighted avg       0.67      0.66      0.66      8000

roc_final

Search engine (example)

search_engine_results_probabilities search_engine_results_embeddings

Adversarial attack (example)

adversarial_attack_example

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published