Skip to content

A Python library for signal processing with PyTorch. Useful for machine learning.

License

Notifications You must be signed in to change notification settings

rostepifanov/nnspt

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Neural Network Signal Processing on Torch

Python version support PyPI version Downloads

NNSPT is a Python library for neural network signal processing on PyTorch.

Table of contents

Authors

Rostislav Epifanov — Researcher in Novosibirsk

Installation

Installation from PyPI:

pip install nnspt

Installation from GitHub:

pip install git+https://github.com/rostepifanov/nnspt

A simple example

from nnspt.segmentation.unet import Unet

model = Unet(encoder='tv-resnet34')

Available components

Encoders

  • ResNet
    • tv-resnet18
    • tv-resnet34
    • tv-resnet50
    • tv-resnet101
    • tv-resnet152
  • ResNeXt
    • tv-resnext50_32x4d
    • tv-resnext101_32x4d
    • tv-resnext101_32x8d
    • tv-resnext101_32x16d
    • tv-resnext101_32x32d
    • tv-resnext101_32x48d
  • DenseNet
    • tv-densenet121
    • tv-densenet169
    • tv-densenet201
    • tv-densenet161
  • EfficientNetV1
    • timm-efficientnet-b0
    • timm-efficientnet-b1
    • timm-efficientnet-b2
    • timm-efficientnet-b3
    • timm-efficientnet-b4
    • timm-efficientnet-b5
    • timm-efficientnet-b6
    • timm-efficientnet-b7
  • EfficientNetLite
    • timm-efficientnet-lite0
    • timm-efficientnet-lite1
    • timm-efficientnet-lite2
    • timm-efficientnet-lite3
    • timm-efficientnet-lite4

Pretraining

  • Autoencoder

Segmentation

Citing

If you find this library useful for your research, please consider citing:

@misc{epifanov2023ecgmentations,
  Author = {Rostislav Epifanov},
  Title = {NNSTP},
  Year = {2023},
  Publisher = {GitHub},
  Journal = {GitHub repository},
  Howpublished = {\url{https://github.com/rostepifanov/nnspt}}
}

About

A Python library for signal processing with PyTorch. Useful for machine learning.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages