NNSPT is a Python library for neural network signal processing on PyTorch.
Rostislav Epifanov — Researcher in Novosibirsk
Installation from PyPI:
pip install nnspt
Installation from GitHub:
pip install git+https://github.com/rostepifanov/nnspt
from nnspt.segmentation.unet import Unet
model = Unet(encoder='tv-resnet34')
-
ResNet
- tv-resnet18
- tv-resnet34
- tv-resnet50
- tv-resnet101
- tv-resnet152
-
ResNeXt
- tv-resnext50_32x4d
- tv-resnext101_32x4d
- tv-resnext101_32x8d
- tv-resnext101_32x16d
- tv-resnext101_32x32d
- tv-resnext101_32x48d
-
DenseNet
- tv-densenet121
- tv-densenet169
- tv-densenet201
- tv-densenet161
-
EfficientNetV1
- timm-efficientnet-b0
- timm-efficientnet-b1
- timm-efficientnet-b2
- timm-efficientnet-b3
- timm-efficientnet-b4
- timm-efficientnet-b5
- timm-efficientnet-b6
- timm-efficientnet-b7
-
EfficientNetLite
- timm-efficientnet-lite0
- timm-efficientnet-lite1
- timm-efficientnet-lite2
- timm-efficientnet-lite3
- timm-efficientnet-lite4
- Autoencoder
- Unet [paper]
If you find this library useful for your research, please consider citing:
@misc{epifanov2023ecgmentations,
Author = {Rostislav Epifanov},
Title = {NNSTP},
Year = {2023},
Publisher = {GitHub},
Journal = {GitHub repository},
Howpublished = {\url{https://github.com/rostepifanov/nnspt}}
}