redisq - fast message processing queue backed up by redis and nodejs
JavaScript CSS
Fetching latest commit…
Cannot retrieve the latest commit at this time.

redisq Build Status

Fast message processing queue backed up by redis and nodejs.


npm install redisq


Sample code that shows how to create a new task and push it to the queue.

var redisq = require('redisq');
redisq.options({redis: {
  host: '',
  port: 6379

var queue = redisq.queue('dummy');
var task = {foo: {bar: true}, data: [10, 20]};

By default queue tries to establish a connection with redis server running on the localhost. Otherwise you can change this behaviour by using options function.

redisq.options({redis: {
  host: '',
  port: 6379

// alternatively you can provide custom redis client
var myClient = require('redis').createClient(6379, '');
redisq.options({redis: myClient});

To process your messages you have to create one or multiply clients that will 'listen' for new tasks and handle them in appropriate way.

var redisq = require('redisq');
redisq.options({redis: {
  host: '',
  port: 6379

var queue = redisq.queue('dummy'),
    concurrency = 16;

queue.process(function(task, cb) {
  console.log(task); // -> { "foo": { "bar": true }, "data": [10, 20] }
}, concurrency);

Please note that you have to call cb function and pass error as the first argument (if there are any).

Changing tasks while processing

The second argument is optional data that will replace the current task (if it fails) with the new data. This can be used for keep track of the number of tries, or updating the data to be worked on based on certain fail conditions.

For example:

var request = require("request");
queue.process(function(task, cb) {
  request(task.url + "/api/data.json", function(err, res, body) {
    // Retry the task with the same data
    if (err)
      return cb(err);

    if (res.statusCode !== 200) {
      // Update the task's url property to try a different version of the api
      task.url = task.url + "/v2/";
      return cb(err, task);

    //Otherwise everything is all good in the hood
    return cb(null);

If task failed, it will be pushed back to the queue for another attempt. Otherwise you can set a retry flag to false so failed tasks will be ignored.

var queue = redisq.queue("myqueue");
queue.retry = false;

Pause / resume processing

Optionally, you can pause the queue in the event your downstream prerequisites have failed. You can pause processing anytime by calling queue.pause(). Once the queue is ready to proceed, call queue.resume().

var queue = redisq.queue('dummy');
queue.process(function(task, cb) {
  // check whether your system ready for new tasks
  if (isPauseRequired()) {
    // pause if not
    // resume to processing in 5 seconds
    setTimeout(function() { queue.resume() }, 5000);

    // task won't be lost if you return an error
    return cb(new Error('It is better to wait..'));


Module has a useful frontend that you can use for monitoring of the queue status. By default queue saves statistics to redis once a minute and stores it for 14 days. To run it use the following code:

var frontend = require('redisq/frontend');


In case if you want to customize host, port or provide a callback, you can pass additional arguments to the listen metod:

var frontend = require('redisq/frontend'),
  options = {
    redis: {
      host: '',
      port: 6379

// frontend.listen(port, [hostname], [options], [callback])
frontend.listen(3000, 'localhost', options, function() {
    console.log("Redisq frontend running on port 3000");

Frontend uses express framework and exposes app for customization, for example adding basic authentication:

var frontend = require("./frontend"),
  express = require("express");"user", "pass"));

Also you can setup your monitoring tools to check the queue health by using special /status uri:

$ curl "http://localhost:3000/status"
  "status": 200,
  "queued": 2651,
  "problems": {}

This method returns 200 if everything is fine, otherwise status would be 500. The check fetches last 15 minutes of history and detects if your workers can't handle all tasks you create.