Rand is a Rust library supporting random generators:
- A standard RNG trait:
rand_core::RngCore - Fast implementations of the best-in-class cryptographic and
non-cryptographic generators:
rand::rngs, and more RNGs:rand_chacha,rand_xoshiro,rand_pcg, rngs repo rand::rngis an asymtotically-fast, reasonably secure generator available on allstdtargets- Secure seeding via the
getrandomcrate
Supporting random value generation and random processes:
Standardrandom value generation- Ranged
Uniformnumber generation for many types - A flexible
distributionsmodule - Samplers for a large number of random number distributions via our own
rand_distrand via thestatrs - Random processes (mostly choose and shuffle) via
rand::seqtraits
All with:
- Portably reproducible output
#[no_std]compatibility (partial)- Many performance optimisations
It's also worth pointing out what Rand is not:
- Small. Most low-level crates are small, but the higher-level
randandrand_distreach contain a lot of functionality. - Simple (implementation). We have a strong focus on correctness, speed and flexibility, but not simplicity. If you prefer a small-and-simple library, there are alternatives including fastrand and oorandom.
- Slow. We take performance seriously, with considerations also for set-up time of new distributions, commonly-used parameters, and parameters of the current sampler.
Documentation:
Add this to your Cargo.toml:
[dependencies]
rand = "0.8.5"To get started using Rand, see The Book.
Rand is mature (suitable for general usage, with infrequent breaking releases which minimise breakage) but not yet at 1.0. Current versions are:
- Version 0.8 was released in December 2020 with many small changes.
- Version 0.9 is in development with many small changes.
See the CHANGELOG or Upgrade Guide for more details.
Rand is built with these features enabled by default:
stdenables functionality dependent on thestdliballoc(implied bystd) enables functionality requiring an allocatorgetrandom(implied bystd) is an optional dependency providing the code behindrngs::OsRngstd_rngenables inclusion ofStdRng,ThreadRng
Optionally, the following dependencies can be enabled:
logenables logging via log
Additionally, these features configure Rand:
small_rngenables inclusion of theSmallRngPRNGnightlyincludes some additions requiring nightly Rustsimd_support(experimental) enables sampling of SIMD values (uniformly random SIMD integers and floats), requiring nightly Rust
Note that nightly features are not stable and therefore not all library and
compiler versions will be compatible. This is especially true of Rand's
experimental simd_support feature.
Rand supports limited functionality in no_std mode (enabled via
default-features = false). In this case, OsRng and from_os_rng are
unavailable (unless getrandom is enabled), large parts of seq are
unavailable (unless alloc is enabled), and ThreadRng is unavailable.
Many (but not all) algorithms are intended to have reproducible output. Read more in the book: Portability.
The Rand library supports a variety of CPU architectures. Platform integration is outsourced to getrandom.
Seeding entropy from OS on WASM target wasm32-unknown-unknown is not
automatically supported by rand or getrandom. If you are fine with
seeding the generator manually, you can disable the getrandom feature
and use the methods on the SeedableRng trait. To enable seeding from OS,
either use a different target such as wasm32-wasi or add a direct
dependency on getrandom with the js feature (if the target supports
JavaScript). See
getrandom#WebAssembly support.
Rand is distributed under the terms of both the MIT license and the Apache License (Version 2.0).
See LICENSE-APACHE and LICENSE-MIT, and COPYRIGHT for details.