These are generic image analysis scripts that I have written, collected, and otherwise given cobbled-together life to through much trial and error during my time at MUSC in the BRIDGE Lab. Versions of these scripts can be found in various studies' "STUDY_code" BIDS folders. These are here as a log/reference do the most basic, generic forms of these scripts, not modified for any particular study's analysis pipeline.
www.bridge-lab.org
www.bridgelab.info
Standard PyDesigner processing:
/path/to/pyd_preproc.sh --base /path/to/BIDS_folder
ViSTa processing:
python /path/tovista.py \
/path/to/vista.nii /path/to/reference.nii /path/to/output/
Integrated DTI-TK and TBSS with optional ROI Analysis:
# 1_DTI-TK.sh
/path/to/1_DTI-TK.sh \
--input /path/to/dki_pydesigner \
--output /path/to/dti-tk \
--subjects sub-101 sub-104 sub-110 \
--bet-thr 0.25
# 2_TBSS.sh
/path/to//2_TBSS.sh \
--input /path/to/derivatives/dti-tk \
--output /path/to/derivatives/tbss \
--subjects sub-101 sub-104 sub-110 \
--wmmets
# 3_Stats.sh
/path/to//3_StatsS.sh \
coming soon!
Freesurfer recon-all -all Segmentation:
/path/to/freesurfer-reconall.sh \
--input /path/to/T1s \
--output /path/to/freesurfer_output \
--subjects A001 A002 A003
NOMIS Normalization:
/path/to/FS_NOMIS.sh \
--base /base/derivatives/freesurfer \
--csv /path/to/PUMA_norms.csv \
--nomis /path/to/NOMIS.py \
--output /base/derivatives/nomis \
--env [name of nomis conda env]
Lesion Segmentation Tool:
/path/to/run_lst.sh /path/to/raw_data_ /path/to/Outputs
TractSeg:
Requires manual script edits at the moment; automation coming soon.
Gross White Matter Estimation:
/path/to/gross_wm_thr.sh /path/to/base_dir /path/to/out_dir /path/to/output.csv
Centiloid Processing:
MRS T1 Mask Conversion:
python MRS_T1_Mask.py mrs_complex_nifti t1_nifti output_mask>
Converting a complex NiFTi to a FLOAT23 NiFTi:
python convert_complex_to_float.py input.nii output.nii