Multiple session, variety of data sources query server implemented by Rust.
- Asynchronous architecture used by Tokio ecosystem
- Apache Arrow with Apache DataFusion
- Supports multiple data source with SQL queries
- Python plugin feature for data source connector and post processor
- Horizontal scaling architecture between servers using the Arrow Flight gRPC feature
Please see the Documentation for an introductory tutorial and a full usage guide. Additionally, the REST API documentation is available according to the OpenAPI specification. Also, refer to the CHANGELOG for the latest information.
License under the MIT
Copyright © 2022 - 2024 SAL Ltd. - https://sal.co.jp
- Linux
- BSD based Unix incl. macOS / Mac OSX
- SVR based Unix
- Windows incl. WSL2 / Cygwin
and other LLVM supported environment.
- Docker CE / EE v20+
$ docker pull ghcr.io/sal-openlab/datafusion-server/datafusion-server:latest
or built without Python plugin version.
$ docker pull ghcr.io/sal-openlab/datafusion-server/datafusion-server-without-plugin:latest
$ docker run -d --rm \
-p 4000:4000 \
-v ./data:/var/datafusion-server/data \
--name datafusion-server \
ghcr.io/sal-openlab/datafusion-server/datafusion-server:latest
If you are only using sample data in a container, omit the -v ./data:/var/xapi-server/data
.
- Docker CE / EE v20+
$ cd <repository-root-dir>
$ ./make-containers.sh
$ docker run -d --rm \
-p 4000:4000 \
-v ./bin/data:/var/datafusion-server/data \
--name datafusion-server \
datafusion-server:0.19.3
If you are only using sample data in a container, omit the -v ./bin/data:/var/xapi-server/data
.
- Rust Toolchain 1.76+ (Edition 2021) from https://www.rust-lang.org
- or the Rust official container from https://hub.docker.com/_/rust
$ cargo init server-executor
$ cd server-executor
[package]
name = "server-executor"
version = "0.1.0"
edition = "2021"
[dependencies]
datafusion-server = "0.19.3"
clap = { version = "4.5", features = ["derive"] }
use std::path::PathBuf;
use clap::Parser;
use datafusion_server::settings::Settings;
#[derive(Parser)]
#[clap(author, version, about = "Arrow and other large datasets web server", long_about = None)]
struct Args {
#[clap(
long,
value_parser,
short = 'f',
value_name = "FILE",
help = "Configuration file",
default_value = "./config.toml"
)]
config: PathBuf,
}
fn main() -> Result<(), Box<dyn std::error::Error>> {
let args = Args::parse();
let settings = Settings::new_with_file(&args.config)?;
datafusion_server::execute(settings)?;
Ok(())
}
For details, further reading main.rs and Config.toml.
# Configuration file of datafusion-server
[server]
port = 4000
flight_grpc_port = 50051
base_url = "/"
data_dir = "./data"
plugin_dir = "./plugins"
[session]
default_keep_alive = 3600 # in seconds
upload_limit_size = 20 # MB
[log]
# trace, debug, info, warn, error
level = "debug"
$ cargo run
Require Python interpreter v3.7+
[dependencies]
datafusion-server = { version = "0.19.3", features = ["plugin"] }
$ cargo run
[profile.release]
opt-level = 'z'
strip = true
lto = "fat"
codegen-units = 1
[dependencies]
datafusion-server = { version = "0.19.3", features = ["plugin"] }
$ cargo build --release
$ cargo clean
- Can be used many kind of data source format (Parquet, JSON, ndJSON, CSV, ...).
- Data can be retrieved from the local file system and from external REST services.
- Processing by JSONPath can be performed if necessary.
- Query execution across multiple data sources.
- SQL query engine uses Arrow DataFusion.
- Details https://arrow.apache.org/datafusion/user-guide/sql/index.html for more information.
- SQL query engine uses Arrow DataFusion.
- Arrow, JSON and CSV formats to response.
$ curl -X "POST" "http://localhost:4000/dataframe/query" \
-H 'Content-Type: application/json' \
-d $'
{
"dataSources": [
{
"format": "csv",
"name": "sales",
"location": "file:///superstore.csv",
"options": {
"inferSchemaRows": 100,
"hasHeader": true
}
}
],
"query": {
"sql": "SELECT * FROM sales"
},
"response": {
"format": "json"
}
}'
$ curl -X "POST" "http://localhost:4000/dataframe/query" \
-H 'Content-Type: application/json' \
-H 'Accept: text/csv' \
-d $'
{
"dataSources": [
{
"format": "json",
"name": "population",
"location": "https://datausa.io/api/data?drilldowns=State&measures=Population",
"options": {
"jsonPath": "$.data[*]"
}
}
],
"query": {
"sql": "SELECT * FROM population WHERE \"ID Year\">=2020"
}
}'
$ curl -X "POST" "http://localhost:4000/dataframe/query" \
-H 'Content-Type: application/json' \
-H 'Accept: application/json' \
-d $'
{
"dataSources": [
{
"format": "arrow",
"name": "example",
"location": "excel://example-workbook.xlsx/Sheet1",
"pluginOptions": {
"skipRows": 2
}
}
],
"query": {
"sql": "SELECT * FROM example"
}
}'