Skip to content

samtcmu/ai-games

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AI Games

The goal of this project is to collect various AIs that can learn to play simple games.

Deep Q-Learning

To train a model run the following:

mkdir -p output/sql-model
python -c 'import picking_cans; picking_cans.deep_q_learning()'

As training continues model files will be written to the output directory.

% ls output/dql-model
dql-model-100.txt       dql-model-200.txt      dql-model-300.txt      dql-model-400.txt

Models will be saved to output/dql-model. To run a model (say output/ql-model/dql-model-400.txt) on a random board run the following:

python -c 'import picking_cans; picking_cans.deep_q_learning(\
    train_model=False, model_file="output/dql-model/dql-model-400.txt")' | less -r

Shallow Q-Learning

To train a model run the following:

mkdir -p output/sql-model
python -c 'import picking_cans; picking_cans.shallow_q_learning()'

As training continues model files will be written to the output directory.

% ls output/sql-model
sql-model-100.txt       sql-model-200.txt      sql-model-300.txt      sql-model-400.txt

Models will be saved to output/sql-model. To run a model (say output/ql-model/sql-model-400.txt) on a random board run the following:

python -c 'import picking_cans; picking_cans.shallow_q_learning(\
    train_model=False, model_file="output/sql-model/sql-model-400.txt")' | less -r

Q-Learning

To train a model run the following:

mkdir -p output/ql-model
python -c 'import picking_cans; picking_cans.q_learning()'

As training continues model files will be written to the output directory.

% ls output/ql-model
ql-model-1000.txt       ql-model-2000.txt      ql-model-3000.txt      ql-model-4000.txt

Models will be saved to output/ql-model. To run a model (say output/ql-model/ql-model-4000.txt) on a random board run the following:

python -c 'import picking_cans; picking_cans.q_learning(\
    train_model=False, model_file="output/ql-model/ql-model-4000.txt")' | less -r

Genetic Algorithms

To train a model run the following:

mkdir -p output/ga-model
python -c 'import picking_cans; picking_cans.genetic_algorithm()'

As training continues model files will be written to the output directory.

% ls output/ga-model
ga-model-0-0.txt        ga-model-0-1.txt
ga-model-1-0.txt        ga-model-1-1.txt
ga-model-2-0.txt        ga-model-2-1.txt
ga-model-3-0.txt        ga-model-3-1.txt

Models will be saved to output/ga-model. To run a model (say output/ga-model/ga-model-0-0.txt) on a random board run the following:

python -c 'import picking_cans; picking_cans.genetic_algorithm(\
    model_file="output/ga-model/ga-model-0-0.txt")' | less -r

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published