Skip to content

Implementation of all basic algorithms needed in Deep Learning

Notifications You must be signed in to change notification settings

sauriii98/Deep-Learning-algorithms

Folders and files

NameName
Last commit message
Last commit date

Latest commit

author
Saurabh Tandale
Jan 27, 2019
9224b02 · Jan 27, 2019

History

14 Commits
Jan 20, 2019
Jan 5, 2019
Jan 5, 2019
Jan 5, 2019
Jan 20, 2019
Jan 5, 2019
Jan 27, 2019
Jan 20, 2019
Jan 5, 2019
Jan 5, 2019
Jan 5, 2019

Repository files navigation

Deep-Learning-algorithms

Implementation of all basic algorithms needed in Deep Learning

  1. Logistic_regression_using_NN.ipynb

    • It is a simple logistic regression algorithm developed using NN (Neural Networks) with zero hidden layers
    • In this notebook, binary classification is done on the dataset of cats(cat or not cat)
  2. NN_with_1_hidden_layer.py

    • It's a python script file which contains all functions required to develop NN (Neural Networks) with one hidden layer
    • function designed are:
      • sigmoid(z)
      • initialize(n_x,n_h1,n_y)
      • forword_propagation(X,parameters)
      • evaluate_cost(A2,Y, parameters, lambd)
      • backword_propagation(X,Y,cache,parameters,lambd)
      • update_parameters(parameters,grads,learning_rate)
      • predict(parameters, X)
      • model(X_train, Y_train, X_test, Y_test,n_h1, num_iterations, learning_rate,lambd)
      • plot_cost(costs)
  3. deep_NN_with_L_layers.py

    • It's a python script file which contains all functions required to develop NN (Neural networks) with 'n' hidden layer
    • It's the generalized algorithm for CNN
    • Functions designed are:
      • sigmoid(Z)
      • relu(Z)
      • sigmoid_backward(dA, cache)
      • relu_backward(dA, cache)
      • initialize_parameters(layer_dims)
      • linear_forward(A, W, b)
      • linear_activation_forward(A_prev, W, b, activation)
      • L_model_forward(X, parameters)
      • compute_cost(AL, Y)
      • linear_backward(dZ, cache)
      • linear_activation
      • linear_activation_backward(dA, cache, activation)
      • L_model_backward(AL, Y, caches)
      • update_parameters(parameters, grads, learning_rate)
      • predict(X, parameters)
      • L_layer_model(X, Y, layers_dims, learning_rate, num_iterations, print_cost)
      • plot_cost(costs)