Implementation of all basic algorithms needed in Deep Learning
-
- It is a simple logistic regression algorithm developed using NN (Neural Networks) with zero hidden layers
- In this notebook, binary classification is done on the dataset of cats(cat or not cat)
-
NN_with_1_hidden_layer.py
- It's a python script file which contains all functions required to develop NN (Neural Networks) with one hidden layer
- function designed are:
- sigmoid(z)
- initialize(n_x,n_h1,n_y)
- forword_propagation(X,parameters)
- evaluate_cost(A2,Y, parameters, lambd)
- backword_propagation(X,Y,cache,parameters,lambd)
- update_parameters(parameters,grads,learning_rate)
- predict(parameters, X)
- model(X_train, Y_train, X_test, Y_test,n_h1, num_iterations, learning_rate,lambd)
- plot_cost(costs)
-
- It's a python script file which contains all functions required to develop NN (Neural networks) with 'n' hidden layer
- It's the generalized algorithm for CNN
- Functions designed are:
- sigmoid(Z)
- relu(Z)
- sigmoid_backward(dA, cache)
- relu_backward(dA, cache)
- initialize_parameters(layer_dims)
- linear_forward(A, W, b)
- linear_activation_forward(A_prev, W, b, activation)
- L_model_forward(X, parameters)
- compute_cost(AL, Y)
- linear_backward(dZ, cache)
- linear_activation
- linear_activation_backward(dA, cache, activation)
- L_model_backward(AL, Y, caches)
- update_parameters(parameters, grads, learning_rate)
- predict(X, parameters)
- L_layer_model(X, Y, layers_dims, learning_rate, num_iterations, print_cost)
- plot_cost(costs)