-
Notifications
You must be signed in to change notification settings - Fork 418
Closed
Labels
Description
import pandas as pd
import numpy as np
import sklearn.preprocessing, sklearn.decomposition, \
sklearn.linear_model, sklearn.pipeline, sklearn.metrics
from sklearn_pandas import DataFrameMapper
from sklearn_pandas import CategoricalImputer
data = pd.DataFrame({'pet': ['cat', 'dog', 'dog', 'fish', None, 'dog', 'cat', 'fish'],
'children': [4., 6, 3, 3, 2, 3, 5, 4],
'salary': [90, 24, 44, 27, 32, 59, 36, 27],
'age':[12,24,21,17,18,25,19,15]})
mapper = DataFrameMapper([
('pet', [CategoricalImputer(), sklearn.preprocessing.LabelBinarizer()]),
(['children', 'salary'], sklearn.preprocessing.StandardScaler(), {'alias': 'children_scaled',
'alias1':'salary_scaled'})
], df_out=True, default=None)
mapper.fit_transform(data.copy())
print(mapper.transformed_names_)
['pet_cat', 'pet_dog', 'pet_fish', 'children_scaled_0', 'children_scaled_1', 'age']
yatide, plpxsk, r-terada, meddulla and sskarkhanis