Skip to content

multiple columns alias name is not effect! #128

@feng-1985

Description

@feng-1985
import pandas as pd
import numpy as np
import sklearn.preprocessing, sklearn.decomposition, \
    sklearn.linear_model, sklearn.pipeline, sklearn.metrics
from sklearn_pandas import DataFrameMapper
from sklearn_pandas import CategoricalImputer

data = pd.DataFrame({'pet':      ['cat', 'dog', 'dog', 'fish', None, 'dog', 'cat', 'fish'],
                      'children': [4., 6, 3, 3, 2, 3, 5, 4],
                      'salary':   [90, 24, 44, 27, 32, 59, 36, 27],
                     'age':[12,24,21,17,18,25,19,15]})

mapper = DataFrameMapper([
     ('pet', [CategoricalImputer(), sklearn.preprocessing.LabelBinarizer()]),
     (['children', 'salary'], sklearn.preprocessing.StandardScaler(), {'alias': 'children_scaled',
                                                                       'alias1':'salary_scaled'})

 ], df_out=True, default=None)
mapper.fit_transform(data.copy())
print(mapper.transformed_names_)

['pet_cat', 'pet_dog', 'pet_fish', 'children_scaled_0', 'children_scaled_1', 'age']

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions