Skip to content
master
Switch branches/tags
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
bin
 
 
doc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

README.rst

https://circleci.com/gh/sdpython/onnxcustom/tree/master.svg?style=svg Build status Build Status Windows GitHub Issues MIT License Downloads Forks Stars size

onnxcustom: custom ONNX

https://raw.githubusercontent.com/sdpython/onnxcustom/master/doc/_static/logo.png

documentation

Tutorial on how to convert machine learned models into ONNX, implement your own converter or runtime. The module must be compiled to be used inplace:

python setup.py build_ext --inplace

Generate the setup in subfolder dist:

python setup.py sdist

Generate the documentation in folder dist/html:

python -m sphinx -T -b html doc dist/html

Run the unit tests:

python -m unittest discover tests

Or:

python -m pytest

To check style:

python -m flake8 onnxcustom tests examples

The function check or the command line python -m onnxcustom check checks the module is properly installed and returns processing time for a couple of functions or simply:

import onnxcustom
onnxcustom.check()

This tutorial has been merged into sklearn-onnx documentation.

About

Tutorial on how to convert machine learned models into ONNX

Resources

License

Packages

No packages published