onnxcustom: custom ONNX
Tutorial on how to convert machine learned models into ONNX, implement your own converter or runtime. The module must be compiled to be used inplace:
python setup.py build_ext --inplace
Generate the setup in subfolder dist
:
python setup.py sdist
Generate the documentation in folder dist/html
:
python -m sphinx -T -b html doc dist/html
Run the unit tests:
python -m unittest discover tests
Or:
python -m pytest
To check style:
python -m flake8 onnxcustom tests examples
The function check or the command line python -m onnxcustom check
checks the module is properly installed and returns processing
time for a couple of functions or simply:
import onnxcustom onnxcustom.check()
This tutorial has been merged into sklearn-onnx documentation.