Skip to content

sdpython/onnxcustom

Repository files navigation

https://circleci.com/gh/sdpython/onnxcustom/tree/master.svg?style=svg Build status Build Status Windows GitHub Issues MIT License Downloads Forks Stars size

onnxcustom: custom ONNX

https://raw.githubusercontent.com/sdpython/onnxcustom/master/_doc/sphinxdoc/source/_static/project_ico.png

documentation

Examples, tutorial on how to convert machine learned models into ONNX, implement your own converter or runtime, or even train with ONNX / onnxruntime.

The function check or the command line python -m onnxcustom check checks the module is properly installed and returns processing time for a couple of functions or simply:

import onnxcustom
onnxcustom.check()

The documentation also introduces onnx, onnxruntime for inference and training. The tutorial related to scikit-learn has been merged into sklearn-onnx documentation. Among the tools this package implements, you may find:

  • a tool to convert NVidia Profilder logs into a dataframe,
  • a SGD optimizer similar to what scikit-learn implements but based on onnxruntime-training and able to train an CPU and GPU,
  • functions to manipulate onnx graph.

Installation of onnxruntime-training

onnxruntime-training is only available on Linux. The CPU can be installed with the following instruction.

pip install onnxruntime-training --extra-index-url https://download.onnxruntime.ai/onnxruntime_nightly_cpu.html

Versions using GPU with CUDA or ROCm are available. Check download.onnxruntime.ai to find a specific version. You can use it on Windows inside WSL (Windows Linux Subsystem) or compile it for CPU:

python tools\ci_build\build.py --skip_tests --build_dir .\build\Windows --config Release --build_shared_lib --build_wheel --numpy_version= --cmake_generator="Visual Studio 16 2019" --enable_training --enable_training_ops

GPU versions work better on WSL, see Build onnxruntime on WSL (Windows Linux Subsystem). onnxcustom can be installed from pypi.

About

Tutorial on how to convert machine learned models into ONNX

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •