### Error Description Running the `compute` method for `InterRowMSAS` with non-positive values and `apply_log=True` generates undesirable warnings. ### Steps to Reproduce ```python3 real_keys = pd.Series(['id1', 'id1', 'id1', 'id2', 'id2', 'id2']) real_values = pd.Series([1, 1.4, 4, -1, 16, -10]) synthetic_keys = pd.Series(['id1', 'id1', 'id1', 'id2', 'id2', 'id2']) synthetic_values = pd.Series([1, 2, -4, 8, 16, 30]) InterRowMSAS.compute( real_data=(real_keys, real_values), synthetic_data=(synthetic_keys, synthetic_values), apply_log=True, ) ``` The code above generates the following warnings: ``` divide by zero encountered in log invalid value encountered in log invalid value encountered in subtract invalid value encountered in reduce ``` ### Expected Behavior These warnings should be suppressed and replaced with a clearer warning message: ``` There are 3 non-positive values in your data, which cannot be used with log. Consider changing 'apply_log' to False for a better result. ```