Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -186,6 +186,7 @@ exclude = [
".git",
"__pycache__",
".ipynb_checkpoints",
".ipynb",
"tasks.py",
]

Expand Down
47 changes: 9 additions & 38 deletions sdmetrics/column_pairs/statistical/contingency_similarity.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,5 @@
"""Contingency Similarity Metric."""

import pandas as pd

from sdmetrics.column_pairs.base import ColumnPairsMetric
from sdmetrics.goal import Goal

Expand Down Expand Up @@ -42,43 +40,16 @@ def compute(cls, real_data, synthetic_data):
columns = real_data.columns[:2]
real = real_data[columns]
synthetic = synthetic_data[columns]
contingency_real = pd.crosstab(
index=real[columns[0]].astype(str),
columns=real[columns[1]].astype(str),
normalize=True,
)
contingency_synthetic = pd.crosstab(
index=synthetic[columns[0]].astype(str),
columns=synthetic[columns[1]].astype(str),
normalize=True,
)

real_append_cols = {}
for col in set(contingency_synthetic.columns) - set(contingency_real.columns):
real_append_cols[col] = [0 for _ in range(len(contingency_real))]
contingency_real = pd.concat(
(contingency_real, pd.DataFrame(real_append_cols, index=contingency_real.index)),
axis=1,
contingency_real = real.groupby(list(columns), dropna=False).size() / len(real)
contingency_synthetic = synthetic.groupby(list(columns), dropna=False).size() / len(
synthetic
)

synthetic_append_cols = {}
for col in set(contingency_real.columns) - set(contingency_synthetic.columns):
synthetic_append_cols[col] = [0 for _ in range(len(contingency_synthetic))]
contingency_synthetic = pd.concat(
(
contingency_synthetic,
pd.DataFrame(synthetic_append_cols, index=contingency_synthetic.index),
),
axis=1,
)

for row in set(contingency_synthetic.index) - set(contingency_real.index):
contingency_real.loc[row] = [0 for _ in range(len(contingency_real.columns))]
for row in set(contingency_real.index) - set(contingency_synthetic.index):
contingency_synthetic.loc[row] = [0 for _ in range(len(contingency_synthetic.columns))]

variation = abs(contingency_real - contingency_synthetic) / 2
return 1 - variation.sum().sum()
combined_index = contingency_real.index.union(contingency_synthetic.index)
contingency_synthetic = contingency_synthetic.reindex(combined_index, fill_value=0)
contingency_real = contingency_real.reindex(combined_index, fill_value=0)
diff = abs(contingency_real - contingency_synthetic).fillna(0)
variation = diff / 2
return 1 - variation.sum()

@classmethod
def normalize(cls, raw_score):
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ def test_end_to_end(self):
result = inter_table_trends.get_score(real_data, synthetic_data, metadata)

# Assert
assert result == 0.4416666666666667
assert result == 0.4416666666666666

def test_with_progress_bar(self):
"""Test that the progress bar is correctly updated."""
Expand All @@ -38,5 +38,5 @@ def test_with_progress_bar(self):
result = inter_table_trends.get_score(real_data, synthetic_data, metadata, progress_bar)

# Assert
assert result == 0.4416666666666667
assert result == 0.4416666666666666
assert mock_update.call_count == num_iter
10 changes: 5 additions & 5 deletions tests/integration/reports/multi_table/test_quality_report.py
Original file line number Diff line number Diff line change
Expand Up @@ -232,9 +232,9 @@ def test_quality_report_end_to_end():
# Assert
expected_properties = pd.DataFrame({
'Property': ['Column Shapes', 'Column Pair Trends', 'Cardinality', 'Intertable Trends'],
'Score': [0.7978174603174604, 0.45654629583521095, 0.95, 0.4416666666666667],
'Score': [0.7978174603174604, 0.45654629583521095, 0.95, 0.4416666666666666],
})
assert score == 0.6615076057048345
assert score == 0.6615076057048344
pd.testing.assert_frame_equal(properties, expected_properties)
expected_info_keys = {
'report_type',
Expand Down Expand Up @@ -272,9 +272,9 @@ def test_quality_report_with_object_datetimes():
# Assert
expected_properties = pd.DataFrame({
'Property': ['Column Shapes', 'Column Pair Trends', 'Cardinality', 'Intertable Trends'],
'Score': [0.7978174603174604, 0.45654629583521095, 0.95, 0.4416666666666667],
'Score': [0.7978174603174604, 0.45654629583521095, 0.95, 0.4416666666666666],
})
assert score == 0.6615076057048345
assert score == 0.6615076057048344
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The new method seems to round the last digit down instead of up

pd.testing.assert_frame_equal(properties, expected_properties)


Expand Down Expand Up @@ -342,7 +342,7 @@ def test_quality_report_with_errors():
None,
],
})
assert score == 0.7249603174603175
assert score == 0.7249603174603174
pd.testing.assert_frame_equal(properties, expected_properties)
pd.testing.assert_frame_equal(details_column_shapes, expected_details)

Expand Down
Loading