In this assignment, I built a web application that scrapes various websites for data related to the Mission to Mars and displays the information in a single HTML page.
I completed initial scraping using Jupyter Notebook, BeautifulSoup, Pandas, and Requests/Splinter.
- Created a Jupyter Notebook file called
mission_to_mars.ipynb
and use this to complete all of your scraping and analysis tasks. The following outlines what you need to scrape.
- Scrape the NASA Mars News Site and collect the latest News Title and Paragragh Text. Assign the text to variables that you can reference later.
# Example:
news_title = "NASA's First Deep-Space CubeSats Say: 'Polo!'"
news_p = "MarCO is a pair of tiny spacecraft that launched with NASA's InSight lander today."
-
Visit the url for JPL's Featured Space Image here.
-
Use splinter to navigate the site and find the image url for the current Featured Mars Image and assign the url string to a variable called
featured_image_url
. -
Make sure to find the image url to the full size
.jpg
image. -
Make sure to save a complete url string for this image.
# Example:
featured_image_url = 'https://www.jpl.nasa.gov/spaceimages/images/largesize/PIA16225_hires.jpg'
- Visit the Mars Weather twitter account here and scrape the latest Mars weather tweet from the page. Save the tweet text for the weather report as a variable called
mars_weather
.
# Example:
mars_weather = 'Sol 1801 (Aug 30, 2017), Sunny, high -21C/-5F, low -80C/-112F, pressure at 8.82 hPa, daylight 06:09-17:55'
-
Visit the Mars Facts webpage here and use Pandas to scrape the table containing facts about the planet including Diameter, Mass, etc.
-
Use Pandas to convert the data to a HTML table string.
-
Visit the USGS Astrogeology site here to obtain high resolution images for each of Mar's hemispheres.
-
You will need to click each of the links to the hemispheres in order to find the image url to the full resolution image.
-
Save both the image url string for the full resolution hemipshere image, and the Hemisphere title containing the hemisphere name. Use a Python dictionary to store the data using the keys
img_url
andtitle
. -
Append the dictionary with the image url string and the hemisphere title to a list. This list will contain one dictionary for each hemisphere.
# Example:
hemisphere_image_urls = [
{"title": "Valles Marineris Hemisphere", "img_url": "..."},
{"title": "Cerberus Hemisphere", "img_url": "..."},
{"title": "Schiaparelli Hemisphere", "img_url": "..."},
{"title": "Syrtis Major Hemisphere", "img_url": "..."},
]
Use MongoDB with Flask templating to create a new HTML page that displays all of the information that was scraped from the URLs above.
-
Start by converting your Jupyter notebook into a Python script called
scrape_mars.py
with a function calledscrape
that will execute all of your scraping code from above and return one Python dictionary containing all of the scraped data. -
Next, create a route called
/scrape
that will import yourscrape_mars.py
script and call yourscrape
function.- Store the return value in Mongo as a Python dictionary.
-
Create a root route
/
that will query your Mongo database and pass the mars data into an HTML template to display the data. -
Create a template HTML file called
index.html
that will take the mars data dictionary and display all of the data in the appropriate HTML elements. Use the following as a guide for what the final product should look like, but feel free to create your own design.
-
Use splinter to navigate the sites when needed and BeautifulSoup to help find and parse out the necessary data.
-
Use Pymongo for CRUD applications for your database. For this homework, you can simply overwrite the existing document each time the
/scrape
url is visited and new data is obtained. -
Use Bootstrap to structure your HTML template.
Coding Boot Camp © 2017. All Rights Reserved.