We present a computationally efficient approach to semantic segmentation, while achieving a high mean intersection over union (mIOU), 70.33% on Cityscapes challenge. The network proposed is capable of running real-time on mobile devices.
Paper: 10.1007/978-3-030-20205-7_4
If you find the code useful for your research, please consider citing us:
@InProceedings{turkmen2019efficient,
author = {Sercan T{\"u}rkmen and Janne Heikkil{\"a}},
title = {An Efficient Solution for Semantic Segmentation: {ShuffleNet} V2 with Atrous Separable Convolutions},
booktitle = {Image Analysis},
year = {2019},
editor = {Michael Felsberg and Per-Erik Forss{\'e}n and Ida-Maria Sintorn and Jonas Unger},
volume = {11482},
pages = {41--53},
address = {Cham},
publisher = {Springer International Publishing},
doi = {10.1007/978-3-030-20205-7_4},
isbn = {978-3-030-20205-7},
url = {http://dx.doi.org/10.1007/978-3-030-20205-7_4},
}
- Add
tensorflow/models/slim
to your python path in order to run most of the scripts! To do so follow these steps:- Clone or download the
tensorflow/models/slim
repository to a separate folder. - Add the path to the repository by running the following code:
export PYTHONPATH=path_to_the_cloned_folder/tensorflow_models/research/slim:${PYTHONPATH}
- Clone or download the
- Prepare dataset. Example scripts and code is available under the
dataset
folder. The dataset should be intfrecord
format.
Checkpoint name | Trained on | Uses DPC | Eval OS | Eval scales | Left-right Flip | mIOU | File Size |
---|---|---|---|---|---|---|---|
shufflenetv2_basic_cityscapes_67_7 | MS COCO 2017* + Cityscapes coarse + Cityscapes fine | No | 16 | [1.0] | No | 67.7% (val) | 4.9MB |
shufflenetv2_dpc_cityscapes_71_3 | MS COCO 2017* + Cityscapes coarse + Cityscapes fine | Yes | 16 | [1.0] | No | 71.3% (val) | 6.3MB |
* Filtered to include only person
, car
, truck
, bus
, train
, motorcycle
, bicycle
, stop sign
, parking meter
classes and samples that contain over 1000 annotated pixels.
To learn more about the available flags you can check common.py
and the specific script that you are trying to run (e.g. train.py
).
python train.py \
--model_variant=shufflenet_v2 \
--tf_initial_checkpoint=./checkpoints/model.ckpt \
--training_number_of_steps=120000 \
--base_learning_rate=0.001 \
--fine_tune_batch_norm=True \
--initialize_last_layer=False \
--output_stride=16 \
--train_crop_size=769 \
--train_crop_size=769 \
--train_batch_size=16 \
--dataset=cityscapes \
--train_split=train \
--dataset_dir=./dataset/cityscapes/tfrecord \
--train_logdir=./logs \
--loss_function=sce
Important: To use DPC architecture in your model, you should also set this parameter:
--dense_prediction_cell_json=./core/dense_prediction_cell_branch5_top1_cityscapes.json
python evaluate.py \
--model_variant=shufflenet_v2 \
--eval_crop_size=1025 \
--eval_crop_size=2049 \
--output_stride=16 \
--eval_logdir=./logs/eval \
--checkpoint_dir=./logs \
--dataset=cityscapes \
--dataset_dir=./dataset/cityscapes/tfrecord
Important: If you are trying to evaluate a checkpoint that uses DPC architecture, you should also set this parameter:
--dense_prediction_cell_json=./core/dense_prediction_cell_branch5_top1_cityscapes.json
export_tflite.py
script contains several parameters at the top of the script.
You can find an example script to run the this model and Tensorflow Lite interpreter for segmentation on Android in this repository and also an example application in sercant/android-segmentation-app.