Skip to content

pyarimafft leverages LOESS regression for outlier cleaning, extracts key cyclicities via the fast fourier transform(fft) & performs time series forecasting with the cyclical features with ARIMA

License

Notifications You must be signed in to change notification settings

shashboy/pyarimafft

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 

Repository files navigation

pyarimafft library

A Python Library which efficiently combines LOESS cleaning, Fast Fourier Transform Extracted key Cyclicities and ARIMA to produce meaningful and explainable time series forecasts.

Installation

pip install pyarimafft

Usage

endog = np.array(vector)

model_obj = pyarimafft.model(forecast_horizon=12)

model_obj.outlier_clean(endog=endog,window_size=10,outlier_threshold=0.8,peak_clean=False,trough_clean=False,both_sides_clean=True)

model_obj.extract_key_seasonalities(power_quantile=0.90,time_period=d)

model_obj.reconstruct_seasonal_features(mode='seperate')

It is possible to add one exogenous vector at a time

model_obj.add_exog(exog1)

model_obj.add_exog(exog2)

Call the auto_arima function

model_obj.auto_arima(p=None,d=None,q=None,max_p=3,max_q=3,max_d=1,auto_fit=True)

Attributes which you can extract

model_obj.endog

model_obj.trend

model_obj.outlier_cleaned

model_obj.seasonal_component

model_obj.isolated_components

model_obj.isolated_seasonality

model_obj.forecast

model_obj.seasonal_feature_train

model_obj.seasonal_feature_future

model_obj.time_train

model_obj.time_future

model_obj.forecast_horizon

model_obj.forecast

model_obj.optimal_order

'''

About

pyarimafft leverages LOESS regression for outlier cleaning, extracts key cyclicities via the fast fourier transform(fft) & performs time series forecasting with the cyclical features with ARIMA

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages