A Python Library which efficiently combines LOESS cleaning, Fast Fourier Transform Extracted key Cyclicities and ARIMA to produce meaningful and explainable time series forecasts.
pip install pyarimafft
endog = np.array(vector)
model_obj = pyarimafft.model(forecast_horizon=12)
model_obj.outlier_clean(endog=endog,window_size=10,outlier_threshold=0.8,peak_clean=False,trough_clean=False,both_sides_clean=True)
model_obj.extract_key_seasonalities(power_quantile=0.90,time_period=d)
model_obj.reconstruct_seasonal_features(mode='seperate')
model_obj.add_exog(exog1)
model_obj.add_exog(exog2)
model_obj.auto_arima(p=None,d=None,q=None,max_p=3,max_q=3,max_d=1,auto_fit=True)
model_obj.endog
model_obj.trend
model_obj.outlier_cleaned
model_obj.seasonal_component
model_obj.isolated_components
model_obj.isolated_seasonality
model_obj.forecast
model_obj.seasonal_feature_train
model_obj.seasonal_feature_future
model_obj.time_train
model_obj.time_future
model_obj.forecast_horizon
model_obj.forecast
model_obj.optimal_order
'''