Skip to content

shivamangina/MachineLearningAlgorithms

Repository files navigation

MachineLearningAlgorithms

Set the working directory

conda create -n ml-algos python=3.9
conda activate ml-algos

conda install jupyter numpy pandas matplotlib scikit-learn tensorflow seaborn
conda install -c conda-forge notebook
jupyter notebook

conda install pip pip install "kagglehub[pandas-datasets]"

Write Algorithms from scratch in Python for all these Machine Learning Algorithms:

  1. Linear Regression - House Price Prediction
  2. Classification - Spam/ Ham Detection [*]
  3. Logistic Regression
  4. Ridge Regression
  5. Lasso Regression
  6. K-Means Clustering
  7. Gaussian Mixture Model
  8. Support Vector Machine - Heart Rate Failure
  9. Decision Trees
  10. Random Forest - House Price Prediction
  11. Gradient Boosting Regression
  12. Principal Component Analysis
  13. Neural Networks
  14. AdaBoost
  15. Naive Bayes
  16. Hidden Markov Model
  17. K-Nearest Neighbors
  18. DBSCAN
  19. Hierarchical Clustering Silhoutte Clustering (KN-Udemy) Anomaly Detection (KN-Udemy)
  20. Apriori
  21. FP-Growth
  22. PageRank
  23. AdaBoost
  24. XGBoost
  25. LightGBM
  26. CatBoost
  27. Word2Vec
  28. Doc2Vec
  29. GloVe
  30. BERT
  31. Transformer
  32. GPT-2
  33. ResNet
  34. VGG
  35. Inception
  36. MobileNet
  37. DenseNet
  38. CapsuleNet
  39. YOLO
  40. SSD
  41. Named Entity Recognation
  42. Faster R-CNN
  43. Mask R-CNN
  44. Neural Style Transfer
  45. Neural Doodle
  46. Neural Talk
  47. Neural Baby Talk
  48. Perceptron
  49. Multi Layer Perceptron
  50. XOR Problem
  51. Gradient descent
  52. Transfer learning
  53. N Gram

[ ] Universal approximation theorem

[ ] Optimizers - Momentum - Nesterov Accelerated Gradient - RMSprop - Adam

[ ] Curse of dimensionality

[ ] Convolution Neural Network - ALexNet - VGG - ResNet - Lenet - Activation Maximization - Saliency Maps

[ ] Recurrent neural network - LSTM - GRU

[ ] Generalization vs Overfitting Cross Validation Bias-Variance Tradeoff Optimization VS Learning

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published