- A: random floating point value
- B: randomly assigned categorical values from ["test", "train"]
- C: random integer values, constructed from an numpy.array
- D: random integer values, constructed from a Series
- E: monthly dates "2021-01-01", "2021-02-01", "2021-03-01" ...
- remove entries with missing data
- fill missing values with 0
12. Convert the following DataFrame from a into b (long to wide). Additionally, convert from b into a (wide to long).
a = pd.DataFrame(
{"value": [1, 2, 3, 4, 5, 6], "group": ["a", "a", "a", "b", "b", "b"]}
)
b = pd.DataFrame(
{"a": [1, 2, 3], "b": [4, 5, 6]}
)
import sklearn as sk
import sklearn.datasets
iris = sk.datasets.load_iris()