Sliding Region based Convolutional Neural Network Modified Faster RCNN for Remote Sensing Imagery (Spatial Resolution and size Independent)
- Python 3
- Anaconda Navigator
- Minimum i5 processor with 8GB RAM
- GPU (NVIDIA Preferred)
- Create a new anaconda environment (in command prompt)
C:\> conda create -n tensorflow1 pip python=3.5
- Activate the enviromnet and update
C:\> activate tensorflow1
(tensorflow1) C:\>python -m pip install --upgrade pip
- Install tensorflow-GPU
(tensorflow1) C:\> pip install --ignore-installed --upgrade tensorflow-gpu
- Install following tools and Packages
(tensorflow1) C:\> conda install -c anaconda protobuf
(tensorflow1) C:\> pip install pillow
(tensorflow1) C:\> pip install lxml
(tensorflow1) C:\> pip install Cython
(tensorflow1) C:\> pip install contextlib2
(tensorflow1) C:\> pip install jupyter
(tensorflow1) C:\> pip install matplotlib
(tensorflow1) C:\> pip install pandas
(tensorflow1) C:\> pip install opencv-python
- Clone or download the repository.
- Download the inference graph from https://drive.google.com/open?id=13_kBwvTKLzY6HODNXM2IPcOd1ol47v2K and store it in a new subfolder named "inference_graph" in the srcnn folder.
- Dpen the working directory (SRCNN) in command prompt and open jupyter notebook.
C:\SRCNN> activate tensorflow1
(tensorflow1) C:\SRCNN>jupyter notebook
- Open the SRCNN.ipynb
- Set the image path, spatial resolution value and overlapping percentange in relivant field.
- Run all cell
Done