Skip to content

sinb/TextClassify

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LR文本分类器

分别使用Bag of Words和TFIDF作为文本特征,训练逻辑斯蒂回归分类器.

依赖

需要python 3

不支持python2,

需要numpy,scipy,sklearn,jieba分词

输入格式

把要训练的文本放入data文件夹,根据训练集和测试集分别放入train和test.每个文件夹放一类文本,文件夹名即为类名.

格式如下.

data
├── test
│   ├── A_宾馆饭店
│   │   ├── bj6_seg_pos.txt
│   │   ├── 三亚市春节宾馆房价不乱涨价违者将受到严处_seg_pos.txt
│   │   └── 住宿-宾馆名录_seg_pos.txt
│   ├── B_城市概况
│   │   ├── bozhou02_seg_pos.txt
│   │   ├── yangzhou01_seg_pos.txt
│   │   └── zhaoqing04_seg_pos.txt
│   ├── C_地方文化
│   .........
│   .........
└── train
    ├── A_宾馆饭店
    │   ├── bj1.txt
    │   ├── 魏宝山景区.txt
    │   └──    .txt
    │   .........
    │   .........
    └── H_休闲娱乐
        ├── banna01.txt
        └── 金牌银牌表示推荐的娱乐场所如果想了解娱乐场所的详细信息请点击娱乐场所名称。.txt

训练和使用

这里使用的数据是随便找的旅游文本数据,可以换成其它的,文件夹格式参考上面的.

Bag of Words

Bag of Words训练使用demo_bow.py

"""
Created on Mon Dec  7 20:36:00 2015

@author: hehe
"""
import os
import numpy as np
from sklearn import linear_model

from TextClassify import BagOfWords
from TextClassify import TextClassify

data_dir = 'data'
## BAG OF WORDS MODEL
BOW = BagOfWords(os.path.join(data_dir, 'train'))

# 创建词典并且保存,如果保存过词典,以后直接load就行
BOW.build_dictionary()
BOW.save_dictionary(os.path.join(data_dir, 'dicitionary.pkl'))

# BOW.load_dictionary('dicitionary.pkl')

## LOAD DATA
train_feature, train_target = BOW.transform_data(os.path.join(data_dir, 'train'))
test_feature, test_target = BOW.transform_data(os.path.join(data_dir, 'test'))

## TRAIN LR MODEL
logreg = linear_model.LogisticRegression(C=1e5)
logreg.fit(train_feature, train_target)

## PREDICT
test_predict = logreg.predict(test_feature)

## ACCURACY

true_false = (test_predict == test_target)
accuracy = np.count_nonzero(true_false) / float(len(test_target))
print("accuracy is %f" % accuracy)

## TextClassify
TextClassifier = TextClassify()
pred = TextClassifier.text_classify('test.txt', BOW, logreg)
print(pred[0])

运行结果

loaded dictionary from data/dicitionary.pkl
done
transforming data in to bag of words vector
done
transforming data in to bag of words vector
done
accuracy is 0.912500
D_购物美食

TFIDF

TFIDF训练使用demo_tfidf.py

About

中文文本分类器,训练简单,多种模型可选.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages