Picket is a system that safeguards against data corruptions during both training and deployment of machine learning models over tabular data. Details of the system can be found in our paper: https://arxiv.org/abs/2006.04730. Please cite our paper if you use the code.
We run the experiments with the following dependencies:
- pytorch v1.0.1
- matplotlib v3.2.1
- pandas v0.23.4
- scikit-learn v0.22.1
- gensim v3.8.1
- tqdm v4.45.0
- adversarial-robustness-toolbox v1.2.0
For poisoning attack at training time, we use the implementation by the Github repo: Poisoning-Attacks-with-Back-gradient-Optimization
- First, download Anaconda (not miniconda) from https://www.anaconda.com/products/individual. Follow the steps for your OS and framework.
- Second, create a conda environment (Python 3.6+). For example, to create a Python 3.7 conda environment, run:
conda create -n picketEnv python=3.7
- Upon starting/restarting your terminal session, you will need to activate your conda environment by running
conda activate picketEnv
The following two steps should be run in the activated virtual environment:
- Run
bash install.sh gpu
for dependency installation within a conda3 environment if a gpu is available, otherwise runbash install.sh cpu
. The default CUDA version is 10.0. Modify intall.sh accordingly if you use a gpu with other CUDA versions. - Run
python -m ipykernel install --user --name=picketEnv
to add your virtual environment to Jupyter
In a new terminal outside the virtual environment:
- Run
jupyter notebook
to Launch the Jupyter Notebook App. - Open one of the notebooks, change the kernel to picketEnv and run it. The following screen shot illustrates how to change the kernel:
The following two notebooks provide demos showing the usage of Picket.
- notebooks/Demo-Titanic.ipynb: The notebook demonstrates how to integrate our system into a machine learning pipeline. The noise is random.
- notebooks/Demo-Wine.ipynb: Same as the previous one except that the noise is adversarial.
The following notebooks run the experiments with the same settings in the paper. The datasets can be found at https://drive.google.com/file/d/1onXCORjgTGizlL_QjZQ2LoVgJ0uDE5Q_/view?usp=sharing.
- notebooks/Experiments-Main.ipynb: The notebook runs experiments that evaluate the end-to-end performance of Picket.
- notebooks/Experiments-MicroBenchmark-TwoStream.ipynb: The notebook validates the effectiveness of the two stream design of PicketNet.
- notebooks/Experiments-MicroBenchmark-EarlyFiltering.ipynb: The notebook validates the effectiveness of early filtering.
- notebooks/Experiments-MicroBenchmark-VictimSampleDetector.ipynb: The notebook validates the effectiveness of one victim sample detector per class.
- notebooks/Experiments-MicroBenchmark-ArtificialNoiseType.ipynb: The notebook validates the effectiveness of the artificial noise injected for detector training.
- notebooks/Experiments-MicroBenchmark-Structure.ipynb: The notebook validates the ability of Picket to capture the structure of the data.
- matlabCode/downstreamEffectNN.m: The script evaluates the effect of filtering on the downstream neural network after notebook/Experiments-Main.ipynb.
Deactivate the virtual environment using conda deactivate
, source deactivate
, or deactivate
depending on the version, when it's no longer need.