Offical repo for the paper titled "A MIMO Detector with Deep Learning in the Presence of Correlated Interference"
pip install tensorflow-gpu==1.12
(you have to install cuda by your hand)pip install matplotlib
pip install mpmath
- Establish all the dependencies
- Keep calm and run
python test.py
- Generate training set and valid set
- train your model there is a example code snippet for you
def generate_training_set_and_valid_set(rho, sir_db):
print("Generating data sets, rho={:.1f} sir={}".format(rho, sir_db))
training_set = DataSet(flag=1, rho=rho, sir=sir_db) # flag == 1 : training set
training_set.produce_all()
valid_set = DataSet(flag=1, rho=rho, sir=sir_db) # flag == 2 : valid set
valid_set.produce_all()
def train_model(rho, sir_db, is_improved=True):
model = DCNNMLD(rho, sir_db, is_improved=is_improved)
model.train()
def gennerate_data_and_then_train_model(rho, sir_db, is_improved=True):
generate_training_set_and_valid_set(rho, sir_db)
train_model(rho, sir_db, is_improved)
Anti 996 License Version 1.0