Skip to content

software-theorem/mnp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 

Repository files navigation

Resources

This Github repository summarizes method name prediction paper resources. For more details, please refer to our paper Abstract Syntax Tree for Method Name Prediction: How Far Are We?

Table of Contents

Papers List

  • A General Path-Based Representation for Predicting Program Properties.[pdf]
    • Uri Alon, Meital Zilberstein, Omer Levy, Eran Yahav. PLDI, 2018.
  • Characterizing the Natural Language Descriptions in Software Logging Statements.[pdf][code]
    • Pinjia He, Zhuangbin Chen, Shilin He, Michael R. Lyu. ASE, 2018.
  • code2vec: Learning Distributed Representations of Code.[pdf][code]
    • Uri Alon, Meital Zilberstein, Omer Levy, Eran Yahav. POPL, 2019.
  • code2seq: Generating Sequences from Structured Representations of Code.[pdf][code]
    • Uri Alon, Shaked Brody, Omer Levy, Eran Yahav. ICLR, 2019.
  • Machine Learning Based Recommendation of Method Names: How Far are We.[pdf][code]
    • Lin Jiang, Hui Liu, He Jiang. ASE, 2019.
  • Mercem: Method Name Recommendation Based on Call Graph Embedding.[pdf][code]
    • Hiroshi Yonai, Yasuhiro Hayase, Hiroyuki Kitagawa. APSEC, 2019.
  • Method Name Suggestion with Hierarchical Attention Networks.[pdf][code]
    • Sihan Xu, Sen Zhang, Weijing Wang, Xinya Cao, Chenkai Guo, Jing Xu. PEPM@POPL, 2019.
  • Recovering Variable Names for Minified Code with Usage Contexts.[pdf][code]
    • Hieu Tran, Ngoc M. Tran, Son Nguyen, Hoan Nguyen, Tien N. Nguyen. ICSE, 2019.
  • Embedding Java Classes with code2vec: Improvements from Variable Obfuscation.[pdf][code]
    • Rhys Compton, Eibe Frank, Panos Patros, Abigail Koay. MSR, 2020.
  • Learning Semantic Program Embeddings with Graph Interval Neural Network.[pdf][code]
    • Yu Wang, Ke Wang, Fengjuan Gao, Linzhang Wang. OOPSLA, 2020.
  • Towards Demystifying Dimensions of Source Code Embeddings.[pdf][code]
    • Md. Rafiqul Islam Rabin, Arjun Mukherjee, Omprakash Gnawali, Mohammad Amin Alipour. arXiv, 2020.
  • Suggesting Natural Method Names to Check Name Consistencies.[pdf][code]
    • Son Nguyen, Hung Phan, Trinh Le, Tien N. Nguyen:. ICSE, 2020.
  • Blended, Precise Semantic Program Embeddings.[pdf]
    • Ke Wang, Zhendong Su. PLDI, 2020.
  • InferCode: Self-Supervised Learning of Code Representations by Predicting Subtrees.[pdf][code]
    • Nghi D. Q. Bui, Yijun Yu, Lingxiao Jiang. ICSE, 2021.
  • A Mocktail of Source Code Representations.[pdf][code]
    • Dheeraj Vagavolu, Karthik Chandra Swarna, Sridhar Chimalakonda. ASE, 2021.
  • A Lightweight Framework for Function Name Reassignment Based on Large-scale Stripped Binaries.[pdf][code]
    • Han Gao, Shaoyin Cheng, Yinxing Xue, Weiming Zhang. ISSTA, 2021.
  • PSIMiner: A Tool for Mining Rich Abstract Syntax Trees from Code.[pdf][code]
    • Egor Spirin, Egor Bogomolov, Vladimir Kovalenko, Timofey Bryksin. MSR, 2021.
  • A Hybrid Code Representation Learning Approach for Predicting Method Names.[pdf][code]
    • Fengyi Zhang, Bihuan Chen, Rongfan Li, Xin Peng. Journal of Systems and Software, 2021.
  • Universal Representation for Code.[pdf][code]
    • Linfeng Liu, Hoan Nguyen, George Karypis, Srinivasan Sengamedu. PAKDD, 2021.
  • Lightweight Global and Local Contexts Guided Method Name Recommendation with Prior Knowledge.[pdf][code]
    • Shangwen Wang, Ming Wen, Bo Lin, Xiaoguang Mao. FSE, 2021.
  • A Context-based Automated Approach for Method Name Consistency Checking and Suggestion.[pdf][code]
    • Yi Li, Shaohua Wang, Tien N. Nguyen. ICSE, 2021.
  • Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code.[pdf][code]
    • Matteo Paltenghi, Michael Pradel. ASE, 2021.
  • Learning to Find Naming Issues with Big Code and Small Supervision.[pdf][code]
    • Jingxuan He, Cheng-Chun Lee, Veselin Raychev, Martin T. Vechev. PLDI, 2021.
  • GraphCode2Vec: Generic Code Embedding via Lexical and Program Dependence Analyses.[pdf][code]
    • Wei Ma, Mengjie Zhao, Ezekiel O. Soremekun, Qiang Hu, Jie M. Zhang, Mike Papadakis, Maxime Cordy, Xiaofei Xie, Yves Le Traon. MSR, 2022.
  • Learning to Represent Programs with Heterogeneous Graphs.[pdf][code]
    • Kechi Zhang, Wenhan Wang, Huangzhao Zhang, Ge Li, Zhi Jin. ICPC, 2022.
  • Multilingual Training for Software Engineering.[pdf][code]
    • Toufique Ahmed, Premkumar T. Devanbu. ICSE, 2022.
  • Learning to Recommend Method Names with Global Context.[pdf]
    • Fang Liu, Ge Li, Zhiyi Fu, Shuai Lu, Yiyang Hao, Zhi Jin. ICSE, 2022.
  • SymLM: Predicting Function Names in Stripped Binaries via Context-Sensitive Execution-Aware Code Embeddings.[pdf][code]
    • Xin Jin, Kexin Pei, Jun Yeon Won, Zhiqiang Lin. CCS, 2022.
  • Method Name Prediction for Automatically Generated Unit Tests.[pdf][code]
    • Maxim Petukhov, Evelina Gudauskayte, Arman Kaliyev, Mikhail Oskin, Dmitry Ivanov, Qianxiang Wang. ICCQ, 2022.
  • A Naming Pattern Based Approach for Method Name Recommendation.[pdf][code]
    • Yanping Yang, Ling Xu, Meng Yan, Zhou Xu, Zhongyang Deng. ISSRE, 2022.
  • A Review on Source Code Documentation.[pdf]
    • Sawan Rai, Ramesh Chandra Belwal, Atul Gupta. ACM Transactions on Intelligent Systems and Technology, 2022.
  • Method name recommendation based on source code metrics.[pdf][code]
    • Saeed Parsa, Morteza Zakeri Nasrabadi, Masoud Ekhtiarzadeh, Mohammad Ramezani. Journal of Computer Languages, 2023.
  • Fold2Vec: Towards a Statement-Based Representation of Code for Code Comprehension.[pdf][code]
    • Francesco Bertolotti, Walter Cazzola. ACM Transactions on Software Engineering and Methodology, 2023.

Experiments

You can use the code from the folder code and our experiments are based on them.

About

method name predction

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published